# City of Cascade <br> City Council Public Hearing <br> Staff Report <br> The River District <br> Annex 19-01, Zone 19-01, PUC 19-01, SUB 19-01 

| Staff: | Heather M. Soelberg |
| :--- | :--- |
| Public Hearing: | January 27, 2020 |
| Applicant: | Steve Arnold, A-Team Land Development \& Real Estate |
| Owner: | Cascade River LLC |
| Location: | North-east of Highway 55, adjacent to the Payette River |
| Size of Site: | 122.41 acres (updated) |
| Existing Zone: | Mixed Use (MU) |
| Proposed Use: | Mixed Use Subdivision |

This Staff Report is for the Public Hearing for Monday, January 27, 2020 called by City of Cascade Regular City Council meeting schedule. This is a Public Hearing.

## REQUEST

Steve Arnold, A-Team Land Development \& Real Estate (hereby "Applicant" or "Developer") made a request for approval of a mixed-use development for The River District fka River Ranch Subdivision ("Project" or "Site"). The application packet consisted of an Annexation Application, Rezone Application, Planned Unit Development Application and a Preliminary Plat Application (hereto referred as "Submittal").

The applicant is requesting annexation of 122.41 acres currently zoned as MU. The site is located outside of the City limits within the area of impact and is currently used as agricultural/grazing land (see Exhibit A). The site is contiguous with existing City limits to the west (at the river point, wherein the river is not considered a separator). The applicant has requested the site be zoned C along the frontage of Highway 55, and R-3 for the remaining property.

The development consists of [updated numbers]: (i) 6.17 acres of commercial use; (ii) 15.06 acres of multifamily use; (iii) 65.39 acres of single-family use; and (iv) 35.79 acres of open space. The subject property is located northeast of Highway 55, adjacent to the Payette River along the southern bank.

## STANDARDS REVIEWED AND APPLIED FOR APPLICATIONS

1. Idaho Statute Sections: 67-6512, 6509, 6535, 50-222(3), 50-223, 63-2215, 67-6525, 67-6511
2. Idaho Code Section 5-1301 through 50-1329
3. Cascade City Codes: CCC 3-2-6-C-6, CCC 3-1-12-A-7(j), CCC 3-2-6-C-7, CCC 3-2-4-A, CCC 3-2-4-C/D, CCC 3-2-6-E-1(a-d), CCC 3-2-3-C-4, CCC 3-1-8-D-2(f-g), CCC 3-1-8-D-2(d), CCC 3-1-8-D-2(a), CCC 3-2-4-D-1, CCC 3-1-8-F, CCC 3-2-3-B-5-c-1, CCC 3-5-4-E-3-h, CCC 3-1-14-A-2-b-2, CCC 8-5-4, and Section 3.2.2 Functional Classification of the Comprehensive Plan

Final Plat for the subdivision will be considered after approval of Construction Drawings.

## BACKGROUND

As Council will recall, the applications in this matter came before the City Council for a public hearing and deliberation on November 18. At that meeting the Council received public comment, completed the public hearing, and continued deliberations to December 9.

Since that date, the City held a water/wastewater workshop before the Council with the City's water/wastewater consultant, Paul Scoresby, and the City Engineer, Trevor Howard. The meeting provided further information relevant to future development - which in turns makes such information relevant to the ongoing deliberations about the River District proposal. As a result of this meeting and further investigation on the part of the engineering team new information is ready for consideration by the Council regarding the City's water and wastewater capacities.

Also since that date, staff received a Summary of the forthcoming Traffic Impact Study ("TIS") which was still incomplete as of that time (received on December 20, 2019)(Exhibit B); and then received the complete TIS on January 13, 2020 (Exhibit C). Staff has also engaged the Applicant in discussions about further forthcoming information, and further discussions of items/conditions relevant to a draft development agreement.

## UPDATES

A. Sewer/Wastewater infrastructure have been preliminarily determined (reference Exhibit D). This Exhibit reflects the available connections and required system improvements to correlate with the developer's phasing. Items related to sewer/wastewater capacities, permittable EDUs and SAF Fee payment negotiations are currently underway through the Development Agreement process.
B. Water supply data remains the same, per the letter provided by Schiess and Associates dated November 21, 2019. Consideration should be given to the Agency Letter received from Cascade Rural Fire Protection District on November 13, 2019 (attached as Exhibit E) which remarks on concerns of water storage for fire suppression for such a large development. A water model is needed to verify fire flows to the PUD.
C. Unknown Fiscal Impacts to the City remains. As stated previously Treasurer review of the Fiscal Impact Report indicates that the numbers as prepared by Applicant do not accurately reflect the fiscal impact to the City. Treasurer review indicates that the development as proposed is likely to cause financial impact in the form of a deficit to the City. The Treasurer has made multiple requests to the Applicant to provide data to further attempt to verify Applicant's figures but Applicant was nonresponsive to these requests.

1. It should be noted that Parties have been negotiating the Development Agreement and as submitted to date, Applicant and Developer have not included plans to mitigate the likely deficit the City may experience if the PUD is approved. It was stated in former Conditions that the "Development Agreement shall include stipulation(s) for developer to provide fiscal relief in order for the passage of Planned Unit Development". Treasurer recommends upholding this required Condition.
D. Traffic impacts on State Highway 55 (ITD jurisdiction) continue to remain unknown since ITD has not begun their review of the TIS. Applicant submitted the Traffic Impact Study to City and ITD on January 13,2020 . This did not allow enough time for ITD to review the Study by January 27, 2020 Hearing. ITD has the review of the Study scheduled to begin January 30, 2020.
2. Until ITD's review and determinations are received, it leaves the continued uncertainty of where the two (2) access points of the PUD will be; it is Staff's opinion that ITD will not allow for both accesses to remain on Highway 55 which would then require modification of the Preliminary Plat.
3. Applicant is requesting that Council stipulate conditional approval of the PUD subject to parties' blanket agreement to ITD's Conditions of Approval - meaning to agree to whatever ITD conditions are before City and Council has had a chance to review ITD's conditions. Staff strongly recommends against this action as this would commit the City to unknown contractual agreements and conditions which could involve cost or risk that the City may never consider entering into in other circumstances. The City must know ITD's Conditions of Approval and the ramifications to the City before entering into a blanket agreement.

## Staff therefore recommends allowing the standard process of development to continue:

1. Allow for ITD to complete their initial review. At this point ITD will "redline" the Study and require revisions and/or additional data to be performed on the Study and/or provided by the Applicant; once items are redlined, the updated Study and supplemental information will be resubmitted to ITD for second review (this may transpire one or more cycles).
2. Additionally, as is standard process, the City will also be issuing City's comments and redlines of the TIS to Applicant which Applicant will be required to address. This will happen concurrently with ITD's review.
3. Upon issuance of ITD's approval of the Study with ITD's stated Conditions of Approval, as per industry standard and best practices, the City should then review ITD's Conditions to determine possible impacts that ITD's determinations will have on the City. These impacts could be minimal or significant to the City. Examples may include but are not limited to:
I. If signaled intersection at the entrance of the PUD is required, the City would be required to accept the signals and all responsibilities that entails including but not limited to maintenance and repair of the signal lights, poles and apparatus; this would add operating cost to the City's budget.
II. By adding one signaled intersection to the City along the highway ITD may require a signal at the opposite end of town or within town to create a controlled and balanced traffic flow. The same rule would apply to the City requiring acceptance of the signals.
III. Adding a signaled intersection could trigger ITD requiring pedestrian facilities from the PUD into town; while the developer would pay for the installation of the infrastructure ITD would require the City to enter into a Maintenance Agreement for the upkeep of said infrastructure, adding operating costs to the City's budget.
4. The City will then have all data necessary to thoughtfully and knowledgably make determinations on the City's own Conditions of Approval, should Council decide to approve the applications.

## COMMENTS

## PUBLIC COMMENTS

1. No public comments have been received by the City since the December 9, 2019 public hearing.

## AGENCY COMMENTS

1. Email received from Idaho Transportation Department ("ITD"), PO Box 8028, Boise, Idaho, on January 16, 2020 (Exhibit F): wrote that ITD has received the Traffic Impact Study and that it is scheduled for review January 30, 2020. Copy of this agency comment is attached.

## STAFF COMMENTS

Applicant has made request of Staff to provide clear Conditions of Approval and to certify that Staff has no remaining requirements of Applicant that have not already disclosed.

1. At this time, Staff anticipates no requests for additional reports or studies. For clarification, Staff does anticipate subsequent submittals to adequately address comments that have been made (and that are forthcoming - TIS).
2. As standard industry best practice, Staff will be submitting comments/redlines to the Applicant on the TIS which will require Applicant response.
3. Staff must elicit direction from Council in order to provide clear Conditions of Approval; Staff will issue Conditions of Approval upon final determinations stipulated by Council.

## TREASURER COMMENTS

The global financial impact to the City should be considered. At this time, the City has significant property already located within the City limits that would stretch the City's ability to provide adequate services to, if they were to be developed. This includes concerns related to infrastructure, staffing, code enforcement, building inspector, potentially law enforcement and emergency services, etc.

The City has expended close to $\$ 70 \mathrm{k}$ on this development to date. That is a significant amount of money. The length of time this process has taken is a financial strain that is going to have a lasting impact on the City.

Experience with the developer/applicant on this process to date has been antagonistic at best. I foresee the developer's resistance to provide basic information as requested as an indicator that the developer will continue to be difficult to work with in the future. If we cannot work cohesively as staff and developer to bring this development forward, how is the City going to be able to work with the developer in the future as the development progresses?

## STAFF FINDINGS AND RECOMMENDATIONS

A. Staff finds that the Applicant's intent to Annex and Zone the property is for development of the PUD. Approval of annexation and zoning is dependent upon approval of, or confidence that the City will approve such PUD and related Development Agreement.

1. Staff recommends that Council deny Annexation and Zone requests due to Applicant's refusal to continue discussing key elements of the Development Agreement which are required to protect the City's interests.
B. Staff finds that since new information has been uncovered since last Council meeting, and further relevant information is forthcoming, Staff does not feel all relevant information has been presented for Council to make an informed decision on approval or denial of the Preliminary Plat and Planned Unit Development at this time.
2. Staff recommends deliberations on the Preliminary Plat and Planned Unit Development be continued to a regular City Council meeting after such time that all remaining information is presented fully.
C. Staff finds that as new information has been provided that is relevant to the submittal that the public should have time to review the information and provide comment.
3. Staff recommends Council direct re-opening of the public hearing with such new information be made available for public review.
D. Staff finds that P\&Z Commission made determinations on a list of six (6) Exceptions requested by Applicant that would allow the project to develop certain components not in compliance with City Code (Exhibit G). These items need to be acted upon by Council at this time.
4. Staff recommends Council approval of Items 1,3-5. Item 2, which had previously been rescinded by Applicant but is now being requested, is prohibited by Code and Fire Marshall, is recommended to be denied. Staff remains moot on Item 6 but if pressed by Council, Staff would recommend denial. Staff requests Council to make final determination on each of the Exceptions requested.
E. Staff finds that the City cannot accommodate a deficit to the budget as a result of any development, and that solutions and mitigation prior to approval or denial of the submittal are essential for the City to ensure that the citizens do not pay the price for costly development.
5. Staff recommends City Council require Applicant to provide the City Treasurer with the information that has been requested, in addition to providing a formal economic plan illustrating solutions and measures that will ensure that the City does not experience a deficit. This plan would then be integrated into the Development Agreement which is currently under draft and negotiation by parties.
F. Staff finds that there are discrepancies in the number of units between the Preliminary Plat, the Market Absorption Letter and the Development Agreement. Staff has determined that the number reflected in the Development Agreement draft is correct.
6. Staff recommends Council to direct Applicant to make corrections and submit updated Preliminary Plat and Market Absorption Letter to City.
G. Staff finds that the two (2) access road names as shown on the TIS (Payette and Ponderosa) are duplicative to existing roads in Cascade. Per CCC (8)(5)(4)(B-1) changes in suffix (lane, street, avenue, etc) shall not differentiate road names. Per CCC (8)(5)(4)(B-6) the extension of River View Drive from across Highway 55 shall apply to the main access point into The River District.
7. Staff recommends Council to direct Applicant to rename roadways and submit updated Preliminary Plat to City.

## ATTACHMENTS:

I. Exhibit A - City Limits Map
II. Exhibit B - Preliminary Traffic Impact Study Summary
III. Exhibit C - Completed Traffic Impact Study
IV. Exhibit D - City Engineer SAF Fee / Phasing Schedule
V. Exhibit E-Agency Letter: Cascade Rural Fire District
VI. Exhibit F - Agency Email: Idaho Transportation Department

## EXHIBIT A

## City of Cascade



- 4.69 square miles
- 3,001.6 total acres

City Limits Boundary

## Peggy Breski

## From:

Sent:
To:
Subject:
Attachments:
steve@ateamboise.com
Friday, December 20, 2019 10:24 AM
Peggy Breski; Judith R. Nissula; Heather Soelberg
RE: Traffic Impact Study
The River Distsrict TIS Memo-DRAFT 12132019.pdf

Peggy,

Attached is a summary of the preliminary findings of the TIS, we will have the finalized draft by next week. Please let me know if you have any questions.

Thank You,

Steve Arnold, Project Manager
208-871-7020
Steve@ateamboise.com


From: Peggy Breski [peggyb@horrocks.com](mailto:peggyb@horrocks.com)
Sent: Monday, December 16, 2019 8:45 AM
To: steve@ateamboise.com; Judith R. Nissula [mayor@cascadeid.us](mailto:mayor@cascadeid.us); Heather Soelberg [clerk@cascadeid.us](mailto:clerk@cascadeid.us) Subject: Traffic Impact Study

Steve,

If I remember correctly you said we'd have the TIS today? Looking forward to it.

Thanks so much,

## Peggy Breski

Senior Planner | Project Manager

## HORROCKS

E NGINEERS
2775 W. Navigator Dr., Suite 210
Meridian, Idaho 83642
Phone 208-895-2520, ext. 435
Email peggyb@horrocks.com
Web www.horrocks.com

EXHIBIT B
(208) 841-4996

## MEMORANDUM - DRAFT

DATE: December 13, 2019

| TO: | Steve Arnold |
| :--- | :--- |
|  | A Team Land Development |

FROM: Chhang Ream, P.E., PTOE
CR Engineering, Inc.
PROJECT: The River District
Cascade, Idaho
SUBJECT: Traffic Impact Study - Preliminary Findings

This memo summarizes preliminary results and findings from the traffic impact study for the referenced project (site plan attached). The key findings are that the proposed Ponderosa Street and SH 55 intersection is expected to exceed ITD's minimum operational thresholds with 2040 full build-out year total traffic and will need improvements. Three mitigation options were evaluated:

1. Conventional signalized intersection
2. Single-lane roundabout
3. Restricted Crossing U-Turn (RCUT) intersection

- RCUT is an alternative intersection design which prohibits left-turn and through movements from the side street approaches. These movements are accommodated by requiring the drivers to make a right turn onto the main road and then make a U-turn 400 to 1,000 feet after the intersection (Please refer to FHWA Restricted Crossing U-turn Information Guide, 2014 for more information). Example concept exhibit is attached.

Based on operational analysis, all three intersection alternatives are expected to mitigate the estimated 2040 traffic conditions to meet ITD's minimum operational thresholds. The preferred alternative will need to be studied further and worked out among ITD, the City of Cascade, and the developer.

The preliminary results and findings are summarized below.

1. PROPOSED DEVELOPENT (Preliminary site plan is attached)

- Mixed-use development with: 9 cottages, 135 single-family dwelling units, 43 townhomes, 256 multifamily dwelling units, and approximately 54,000 square feet of general commercial space
- The expected build-out year (full occupancy) is 2040
- Two full-access approaches are proposed on SH 55 for site access, Payette Street to the northwest and Ponderosa Street to the southeast to align with Riverview Driveway
- Based on Institute of Transportation Engineers (ITE) trip generation rates, build-out of the proposed development is expected to generate 7,628 trips per weekday, 421 trips during the AM peak hour, and 645 trips during the PM peak hour.
- $1 \%$ of trips generated by the development in the AM peak hour and $20 \%$ in the PM peak hour are expected to be captured internally within the site
- The development is expected to attract 94 pass-by trips in the PM peak hour

Most of the site traffic (90\%) is expected to have origins/destinations northwest of the site and $10 \%$ southeast of the site

## 2. 2019 EXISTING TRAFFIC CONDITIONS

E Existing AM and PM peak hours traffic counts were obtained for the Riverview Parkway and SH 55 intersection on November 20-21, 2019

- The peak hour counts were adjusted to the peak month volumes (July) based on the seasonal adjustment factors developed from historical traffic data from Automated Traffic Recorder (ATR) No. 043 "Valley" located 14 miles north of the development on SH 55
- One crash was reported on SH 55 along the site frontage between 2014 and 2018.
- Riverview Parkway and SH 55 intersection is operating at LOS B during the peak hours with the seasonal adjusted peak hour volumes, which meets ITD minimum operational thresholds.
- No intersection control, capacity improvements, or turn lanes are needed under 2019 existing traffic conditions


## 3. 2040 BACKGROUND TRAFFIC

- The expected background traffic growth on SH 55 is estimated by extrapolating the adjusted existing counts with a $2.0 \%$ annual growth
- The proposed Riverview Park Subdivision ( 55 dwelling units) is planning to take access on Riverview Parkway. Site traffic generated by this off-site development is included in the analysis
- With 2040 background traffic, the Riverview Parkway and SH 55 intersection is expected to meet ITD's turn lane guidelines for following turn lanes on SH 55:
- Southeast-bound right-turn lane
- Northwest-bound left-turn lane
- With 2040 background traffic growth and turn lanes, Riverview Parkway and SH 55 intersection is expected to operate at LOS C or better during the peak hours, meeting ITD minimum operational thresholds.


## 4. 2040 TOTAL TRAFFIC

E With 2040 total traffic, the proposed Payette Street and SH 55 intersection is expected to meet ITD's turn-lane guidelines for the following turn lanes on SH 55:

- Northwest-bound right-turn lane
- Southeast-bound left-turn lane

The proposed Payette Street and SH 55 intersection is expected to meet ITD minimum operational thresholds with the turn lanes as an unsignalized intersection

- With 2040 total traffic, the proposed Ponderosa Street/Riverview Parkway and SH 55 intersection is expected to meet ITD's turn-lane guidelines for the following turn lanes on SH 55:
- Northwest-bound right-turn lane
- Southeast-bound left-turn lane
- The proposed Ponderosa Street/Riverview Parkway and SH 55 intersection is expected to exceed ITD minimum operational thresholds during the peak hours and will need improvements
- Three intersection alternatives are proposed to mitigate the intersection:
- Single-lane roundabout
- Traffic signal
- RCUT intersection



## Attachment B - RCUT Intersection Concept Example



## TRAFFIC IMPACT STUDY

## THE RIVER DISTRICT

Cascade, Idaho
January 10, 2020
 Traffic Impact Study The River District - Cascade, Idaho

## Table of Contents

EXECUTIVE SUMMARY ..... 1
1.0 Proposed Development ..... 1
2.0 2019 Existing Traffic Conditions ..... 2
3.02040 Background Traffic Conditions ..... 2
4.0 2040 Build-Out Year Total Traffic Conditions .....  3
1.0 INTRODUCTION ..... 4
1.1 Proposed Development ..... 5
1.2 Study Approach ..... 5
1.3 Study Area ..... 5
1.4 Study Period ..... 5
1.5 Analysis Methods and Performance Measure Thresholds ..... 5
2.0 EXISTING CONDITIONS ..... 7
2.1 Roadway Network and Lane Configuration ..... 7
2.2 Existing Traffic Volumes ..... 7
2.3 Intersection Crash Data ..... 7
2.4 Intersection Operations ..... 10
2.5 Intersection Mitigation ..... 10
$3.0 \quad 2040$ BACKGROUND TRAFFIC CONDITIONS ..... 11
3.1 Roadway Network ..... 11
3.2 Background Traffic ..... 11
3.3 Intersection Operations ..... 13
3.4 Intersection Mitigation ..... 13
4.0 2040 BUILD-OUT YEAR TOTAL TRAFFIC CONDITIONS. ..... 14
4.1 Roadway Network ..... 14
4.2 Site Traffic ..... 14
4.2.1 Trip Generation ..... 14
4.2.2 Trip Capture ..... 15
4.2.3 Pass-by Trips ..... 15
4.2.4 Modal Split ..... 15
4.2.5 Trip Distribution and Assignment ..... 15
4.3 Total Traffic ..... 15
4.4 Intersection Operations ..... 19
4.5 Intersection Mitigation ..... 20
4.6 Site Access and Circulation ..... 23
APPENDIX A: TRAFFIC COUNTS ..... A
APPENDIX B: 2019 CAPACITY ANALYSIS REPORTS ..... B
APPENDIX C: 2040 CAPACITY ANALYSIS REPORTS ..... C
APPENDIX D: TURN LANE WARRANT WORKSHEETS ..... D

## List of Figures

Figure 1.1 - Site Location and Vicinity ..... 4
Figure 1.2 - Preliminary Site Plan .....  6
Figure 2.1 - Existing Intersection Control Lane and Configuration .....  8
Figure 2.2-2019 Existing Peak Hour Traffic .....  9
Figure 3.1 - 2040 Build-Out Year Peak Hour Background Traffic ..... 12
Figure 4.1 - Site Traffic Primary Trip Distribution Patterns ..... 16
Figure 4.2 - 2040 Build-Out Year Peak Hour Site Traffic ..... 17
Figure 4.3-2040 Build-Out Year Peak Hour Total Traffic ..... 18

## List of Tables

Table 1 - Proposed Intersection Improvements Summary .....  1
Table 2.1 - Intersection Operations - 2019 Seasonally Adjusted Existing Traffic. ..... 10
Table 3.1 - Intersection Operations - 2040 Build-Out Year Background Traffic ..... 13
Table 3.2 - Intersection Operations - 2040 Build-Out Year Background Traffic Mitigation ..... 13
Table 4.1 - Build-Out Site Traffic Trip Generation Summary ..... 14
Table 4.2 - Build-Out Site Traffic Percentage of 2040 Total Traffic ..... 15
Table 4.3 - Intersection Operations - 2040 Build-Out Year Total Traffic (Two SH 55 Accesses). ..... 19
Table 4.4 - Intersection Operations - 2040 Build-Out Year Total Traffic (One SH 55 Access) ..... 19
Table 4.5 - Intersection Operations - 2040 Build-Out Year Total Traffic Mitigation (Two SH 55 Accesses) ..... 21
Table 4.6 - Intersection Operations - 2040 Build-Out Year Total Traffic Mitigation (One SH 55 Access) ..... 22


## EXECUTIVE SUMMARY

A-Team Land Development retained CR Engineering, Inc. to prepare a traffic impact study (TIS) for The River District, a proposed mixed-use development located northeast of the Riverview Parkway and SH 55 intersection in Cascade, Idaho, as shown in Figure 1.1. The scope of this TIS was determined through coordination with the Idaho Transportation Department (ITD).

The TIS evaluates the potential traffic impacts resulting from, background traffic growth, off-site development in the area, and the proposed development, and identifies improvements to mitigate the impacts if needed. Traffic impacts were evaluated based on the proposed land uses and access as shown in the preliminary site plan under weekday AM and PM peak hours traffic conditions. Table 1 summarizes the improvements needed to mitigate the traffic impacts for the following analysis years traffic conditions:

- 2019 Existing traffic

E 2040 Build-out year background traffic
E 2040 Build-out year total traffic
Table 1 - Proposed Intersection Improvements Summary

| Intersection |  | $2019$ <br> Existing | 2040 Build-Out Year |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Background | Total |
| (1) | Riverview Parkway and SH 55 |  | None | Southeast-bound right-turn lane | Roundabout, signal, or RCUT |
| (2) | $\begin{gathered} \text { Payette Street } \\ \text { and } \\ \text { SH } 55 \\ \text { (proposed access) } \end{gathered}$ | N/A | N/A | Northwest-bound right-turn lane |

### 1.0 Proposed Development

1.1 The River District is a proposed mixed-use development estimated to include 144 single-family dwelling units, 299 multifamily dwelling units, and 54,000 square feet of general retail land use. The expected buildout year is 2040 but may change depending on the market conditions.
1.2 Based on the procedures outlined in the Trip Generation Handbook, $3^{\text {rd }}$ Edition and the Trip Generation Manual, $10^{\text {th }}$ Edition, both published by the Institute of Transportation Engineers (ITE), the proposed development is estimated to generate approximately 7,628 trips per weekday with 421 trips during the AM peak hour and 645 trips during the PM peak hour.

- Based on the proposed land use and ITE methodologies, the development is expected to capture approximately $1 \%$ of the AM peak hour trips and $20 \%$ of the PM peak hour trips within the site. The daily capture rate was assumed to be $10 \%$, the average of the AM and PM peak hour capture rates.
- Based on ITE pass-by rates, the proposed retail land use within the development is expected to generate 94 pass-by trips in the PM peak hour. No ITE pass-by trip rate is available for the proposed retail land use in the AM peak hour or daily and was not included in the analysis.
E All trips generated by the development were assumed to be made by personal or commercial vehicles.
1.3 The estimated site traffic distribution patterns are:

E $90 \%$ with origins/destinations northwest of the site

- $10 \%$ with origins/destinations southeast of the site
1.4 The River District is proposing two access points on SH 55 for site access:
- Payette Street (Northwest access)
- Proposed as a full access located approximately 450 feet southeast of the existing North Fork Payette River bridge and 400 feet northwest of Riverview Parkway, an existing approach on SH 55
- Does not meet ITD's 1,320-foot minimum spacing requirements for public road spacing on a regional route in a transitional area
- Meets ITD's 360-foot minimum spacing requirements for a full access driveway on a regional route in a transitional area
- Expected to meet ITD's minimum operational thresholds with 2040 total traffic as an unsignalized intersection
- Ponderosa Street (Southeast access)
- Proposed as a full access to align with Riverview Parkway to the southwest
- Located approximately 460 feet northwest of the northernmost access to the Cascade Airport
- Does not meet ITD's 1,320-foot minimum spacing requirements for public road spacing on a regional route in a transitional area
- Meets ITD's 360-foot minimum spacing requirements for a full access on a regional route in a transitional area


### 2.0 2019 Existing Traffic Conditions

2.1 Traffic counts were collected at the Riverview Parkway and SH 55 intersection on November 21, 2019. To account for peak season travel along SH 55, the traffic volumes along SH 55 were adjusted for seasonal variations to reflect the summer peak month traffic volumes. Seasonal adjustment factors were estimated from historical traffic data from Automatic Traffic Recorder (ATR) No. 043. The seasonal adjustment factors used in this study are:
E 1.96 in the AM peak hour
E 2.67 in the PM peak hour
2.2 With 2019 seasonally-adjusted existing traffic, the Riverview Parkway and SH 55 intersection meets ITD's minimum operational thresholds. Additionally, no turn lanes are required based on ITD's turn-lane guidelines. As a result, no improvements are needed to mitigate 2019 existing traffic.

### 3.02040 Background Traffic Conditions

3.1. The study area intersection and roadway are expected to remain the same as existing conditions. ITD conducted a corridor study for SH 55 from Marsing to Banks Lowman Road between 2014-2016. However, the North Corridor Plan (Banks Lowman Road to New Meadows) has not been completed and is not available at the time of this study.
3.2. 2040 background traffic on SH 55 was estimated by extrapolating the seasonally adjusted 2019 existing counts with a $2 \%$ annual growth rate.
E. This growth rate was estimated based on historical traffic count data from ATR No. 043
3.3. In addition to the traffic growth, one proposed off-site development located along Riverview Parkway was also included in the background traffic:

- Riverview Park Subdivision - 55 single-family lots
3.4. With 2040 background traffic, the Riverview Parkway and SH 55 intersection is expected to continue to meet ITD's minimum operational thresholds analyzed with the existing intersection control and lane configurations. Based on ITD's turn-lane guidelines, the following turn lane is needed:
E Southwest-bound right-turn lane


### 4.02040 Build-Out Year Total Traffic Conditions

4.1 With 2040 total traffic, the proposed Payette Street and SH 55 intersection is expected to meet ITD's minimum operational thresholds as an unsignalized intersection. Based on ITD's turn-lane guidelines, the following turn lane is needed

- Northwest-bound right-turn lane
- The right-turn lane is warranted when the development generates approximately 590 PM peak hour trips
4.2 With 2040 total traffic, the Riverview Parkway/Ponderosa Street and SH 55 intersection is expected to exceed ITD's minimum operational thresholds. Three mitigation options are proposed to mitigate 2040 build-out conditions:


## Single-lane Roundabout

- A single-lane roundabout is expected to operate at LOS B or better under 2040 build-out year peak hour total traffic conditions with two accesses on SH 55 and LOS C or better with one access onto SH 55

E Signal with left-turn lanes on all approaches

- A signal is expected to operate at LOS A under 2040 build-out year peak hour total traffic conditions with two accesses on SH 55 and LOS B or better with one access on SH 55
- Restricted Crossing U-turns (RCUT) intersection - RCUT intersection alternative would allow right-in, right-out, and left-in movements only, and prohibits left-turn and through movements from the proposed access and Riverview Parkway. These movements will be accommodated by requiring the drivers to make a right-turn onto SH 55 and then make a U-turn after the intersection. A loon will need to be constructed on SH 55400 to 1,000 feet southeast of the intersection to accommodate U-turns. Additional widenings on SH 55 will be needed to include a southeast-bound U-turn lane. The Payette Street intersection will also need to be widened to include a loon to accommodate U-turns.
- All lane groups are expected to operate at LOS C or better with a v/c ratio of 0.38 or less with two accesses on SH 55 and LOS C or better with a v/c ratio of 0.55 or less with one access on SH 55
4.3 As discussed above, the Riverview Parkway/Ponderosa Street and SH 55 intersection is expected to exceed ITD's minimum operational thresholds under build-out conditions. Preliminary phasing analysis was conducted to determine when the intersection exceeds LOS D thresholds. The intersection is expected to operate at LOS E by year 2025 when the development generates 144 PM peak hour trips.


### 1.0 INTRODUCTION

CR Engineering, Inc. has been retained to prepare a traffic impact study (TIS) for The River District, a proposed mixed-use development located in the northeast quadrant of the Riverview Parkway and SH 55 intersection in Cascade, Idaho. Figure 1.1 shows the site location and its vicinity. The TIS evaluates the potential traffic impacts resulting from background traffic growth, off-site development in the area, the proposed development, and identifies improvements to mitigate the impacts if needed.

Figure 1.1-Site Location and Vicinity


### 1.1 Proposed Development

Figure 1.2 shows the preliminary site development plan with the proposed access locations. The expected buildout year for the development is 2040 but may change depending on the market conditions. At full build-out, The River District is estimated to include the following land uses:

- 144 single-family dwelling units
o 135 single-family homes
o 9 cottages
- 299 multifamily dwelling units
o 43 townhomes
o 52 fourplexes
- 54,000 square feet of general retail

Based on the preliminary site plan, the development is proposing one full access to align with Riverview Parkway and one full access to align with the existing private approach located approximately 400 feet northwest of Riverview Parkway.

### 1.2 Study Approach

The TIS was prepared in accordance with ITD IDAPA 39.03.42 - Rules Governing Highway Right-of-Way Encroachments on State Rights-of-Way. The scope of this TIS was determined through coordination with ITD.

### 1.3 Study Area

The following study area intersections were identified by ITD for collecting peak hour turning movement counts and traffic impact analysis:

1. Riverview Parkway and SH 55 intersection
2. All proposed site access points

### 1.4 Study Period

The analysis periods will be weekday AM and PM peak hours of operation of the transportation system. The analysis years are:

E 2019 existing traffic
E 2040 build-out year background traffic
E 2040 build-out year total traffic

### 1.5 Analysis Methods and Performance Measure Thresholds

Intersection capacity analysis was performed using the Synchro 10 (Version 10.3.122.0), which utilizes HCM6 methodologies. All parameters used in the analysis were based on existing data when available or Synchro default values, when not available. For future signals, the signal timing was optimized in Synchro for the intersection lane configuration and traffic conditions.

For intersections under ITD's jurisdiction, the minimum operational threshold is a v/c ratio of 0.90 for the overall intersection and lane group.

Figure 1.2 - Preliminary Site Plan


### 2.0 EXISTING CONDITIONS

### 2.1 Roadway Network and Lane Configuration

The study area roadways are described below. The roadway functional classification is based on the 2012 ITD Access Control Map for roadways under ITD's jurisdiction.

SH 55 is classified as a Regional Route with a posted speed limit of 35 mph west of Riverview Parkway and 45 mph east of Riverview Parkway. SH 55 has one lane in each direction with a center turn lane and a rural section without curb, gutter, or sidewalk.

Riverview Parkway is an unpaved local road providing access for the airport and recreational sites along the river.

### 2.2 Existing Traffic Volumes

Weekday AM and PM peak hour turning movement traffic counts were obtained on November 21, 2019. The peak hour intersection turning movement counts were collected on a weekday for a 2 -hour period at 15 -minute intervals between 7:00 and 9:00 during the AM peak travel period hour and between 4:00 and 6:00 during the PM peak travel period. Existing turning movement counts are included in the appendix.

Traffic volumes on SH 55 experience high seasonal variations due to numerous recreational sites. Based on historical traffic count data from ITD automatic traffic recorder (ATR) No. 043, traffic volumes on SH 55 are generally lower in the winter months compared to the summer months. The peak month typically occurred in July and the low month typically occurred in January. Based on the historical count data, the seasonal adjustment factors are 1.96 for the AM peak hour and 2.67 for the PM peak hour. Figure 2.2 summarizes the seasonally adjusted existing peak hour traffic volumes for the AM and PM peak hours.

### 2.3 Intersection Crash Data

The most current five-year crash data (2014-2018) was obtained from the Local Highway Technical Assistance Council (LHTAC) website (http://gis.lhtac.org/safety/). There was one reported crash in the five-year span in which the driver drove left of centerline into an embankment due to inattentive driving.

Figure 2.1 - Existing Intersection Control Lane and Configuration

(1) Riverview Parkway \& SH 55 $\lambda$
he


Figure 2.2-2019 Existing Peak Hour Traffic

(1) Riverview Parkway \& SH 55

(1) Riverview Parkway \& SH 55


### 2.4 Intersection Operations

To determine the existing traffic impacts, the study area intersection was analyzed with the existing intersection control and lane configuration with 2019 seasonally-adjusted existing peak hour traffic. Copies of the analysis reports are included in the appendix. Table 2.5 summarizes the intersection capacity analysis results. The study area intersection of Riverview Parkway and SH 55 currently meets ITD minimum operational thresholds with the seasonally adjusted volumes.

Table 2.1 - Intersection Operations - 2019 Seasonally Adjusted Existing Traffic

| Intersection |  | Control | Intersection |  | Peak H |  |  | Peak H |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | or Lane Group | LOS | Delay [s/veh] | v/c <br> Ratio | LOS | Delay [s/veh] | v/c Ratio |
| (1) | Riverview Parkway and SH 55 |  |  | SEB | - | - | - | - | - | - |
|  |  | NWL |  | A | 8 | $<0.01$ | A | 9 | $<0.01$ |
|  |  | NWT |  | - | - | - | - | - | - |
|  |  | NEB |  | B | 11 | 0.01 | B | 13 | 0.01 |

### 2.5 Intersection Mitigation

The SH 55 and Riverview Parkway intersection is expected to meet minimum operational thresholds with the existing lane configuration, intersection control, and seasonally adjusted traffic volumes. No improvements are needed to mitigate 2019 existing traffic impacts.

### 3.02040 BACKGROUND TRAFFIC CONDITIONS

### 3.1 Roadway Network

The study area roadways and intersection are expected to remain the same as existing conditions. SH 55 conducted a corridor plan from Marsing to Nampa and State Street to Banks Lowman Road between 2014-2016. However, the North Corridor Plan (Banks Lowman Road to New Meadows) has not been completed and is not available at this time.

### 3.2 Background Traffic

2040 background traffic was estimated by extrapolating the 2019 seasonally-adjusted existing traffic counts by the following annual growth rates:

- $2.0 \%$ per year on SH 55

This growth rate is based on ATR \#043 data collected from 1990 to October 2019. In addition, the Riverview Park Subdivision, a 55 residential lot development southwest of The River District which accesses SH 55 via Riverview Driveway, was assumed to be fully constructed by 2025 and was included as off-site traffic. Figure 3.1 summarizes the 2040 build-out year peak hour background traffic.

Figure 3.1-2040 Build-Out Year Peak Hour Background Traffic


### 3.3 Intersection Operations

To determine the 2040 background traffic impacts, the intersection of Riverview Parkway and SH 55 was analyzed with the existing intersection control and lane configuration with 2040 background traffic volumes as discussed in Section 3.2. Copies of the analysis reports are included in the appendix. Table 3.1 summarizes the intersection capacity analysis results. The intersection is expected to meet ITD's minimum operational thresholds under 2040 background traffic conditions.

Table 3.1 - Intersection Operations - 2040 Build-Out Year Background Traffic

| Intersection |  | Control / Lane | Intersection |  | Peak H |  |  | Peak H |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | or Lane Group | LOS | Delay [s/veh] | v/c Ratio | LOS | Delay [s/veh] | v/c <br> Ratio |
| (1) | Riverview Parkway and SH 55 |  | $2 \pi$ | SEB | - | - | - | - | - | - |
|  |  | NWL |  | A | 8 | $<0.01$ | A | 10 | 0.01 |
|  |  | NWT |  | - | - | - | - | - | - |
|  |  | NEB |  | B | 13 | 0.08 | C | 17 | 0.08 |

### 3.4 Intersection Mitigation

The SH 55 and Riverview Parkway intersection is expected to continue to meet minimum operational thresholds with the existing lane configuration, intersection control, and seasonally adjusted 2040 background traffic volumes. However, a southeast-bound right-turn lane is warranted based on ITD's turn-lane guidelines. Turn-lane warrant worksheets are included in the appendix. The right-turn lane is needed to mitigate the proposed Riverview Park Subdivision’s impacts. Table 3.2 summarizes the intersection's operations with the additional right-turn lane.

Table 3.2 - Intersection Operations - 2040 Build-Out Year Background Traffic Mitigation

| Intersection |  | Control / Lane | Intersection |  | Peak H |  |  | Peak H |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | or Lane Group | LOS | Delay [s/veh] | v/c <br> Ratio | LOS | Delay [s/veh] | v/c Ratio |
| (1) | Riverview Parkway and SH 55 |  | $2$ | SEB | - | - | - | - | - | - |
|  |  | NWL |  | A | 8 | $<0.01$ | A | 10 | 0.01 |
|  |  | NWT |  | - | - | - | - | - | - |
|  |  | NEB |  | B | 13 | 0.08 | C | 17 | 0.08 |

### 4.02040 BUILD-OUT YEAR TOTAL TRAFFIC CONDITIONS

### 4.1 Roadway Network

SH 55 along the site frontage is expected to remain the same as existing conditions with the exception of the southeast-bound right-turn lane needed to mitigate 2040 background traffic impacts. Based on the preliminary site plan, The River District is proposing two full-access approaches on SH 55, one aligning with Riverview Parkway and the other one aligning with an existing private approach. 2040 total traffic analysis is based on the proposed site access as shown in the preliminary site plan. In addition, the traffic impact analysis was also evaluated with only one access on SH 55.

### 4.2 Site Traffic

### 4.2.1 Trip Generation

Site trip generation is estimated using the procedures recommended in the latest edition of the Trip Generation Manual ( $10^{\text {th }}$ edition), published by the Institute of Transportation Engineers. Table 4.1 summarizes the site trip generation. The proposed development is estimated to generate approximately 7,628 trips per weekday with 421 trips during the AM peak hour and 645 trips during the PM peak hour.

Table 4.1 - Build-Out Site Traffic Trip Generation Summary

|  ITE <br> Land Use Code |  | Size | Unit | Total Trips | Capture Rate | Internal Capture Trips | $\begin{gathered} \text { Pass-by Pass-by } \\ \text { Rates Trips } \\ \hline \end{gathered}$ |  | Primary Trips |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Total |  |  |  |  |  |  | Ent | ring |  | ing |
| Weekday Daily (vpd) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-Family Detached Housing | 210 |  | 144 | DU | 1,454 | 10\% | 145 | -- | -- | 1,309 | 50\% | 655 | 50\% | 654 |
| Multifamily Housing (Low-Rise) | 220 | 299 | DU | 2,220 | 10\% | 222 | -- | -- | 1,998 | 50\% | 999 | 50\% | 999 |
| Retail | 820 | 54 | TSF | 3,954 | 10\% | 395 | -- | -- | 3,559 | 50\% | 1,779 | 50\% | 1780 |
| Weekday Daily Total Trips |  |  |  | 7,628 |  | 762 |  | -- | 6,866 |  | 3,433 |  | 3,433 |
| Weekday AM Peak Hour (vph) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-Family Detached Housing | 210 | 144 | DU | 107 | 1\% | 1 | -- | -- | 106 | 25\% | 27 | 75\% | 79 |
| Multifamily Housing (Low-Rise) | 220 | 299 | DU | 135 | 1\% | 1 | -- | -- | 134 | 23\% | 31 | 77\% | 103 |
| Retail | 820 | 54 | TSF | 179 | 1\% | 2 | -- | -- | 177 | 62\% | 110 | 38\% | 67 |
| Weekday AM Peak Hour Total Trips |  |  |  | 421 |  | 4 |  | -- | 417 |  | 168 |  | 249 |
| Weekday PM Peak Hour (vph) |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Single-Family Detached Housing | 210 | 144 | DU | 144 | 20\% | 29 | -- | -- | 115 | 63\% | 72 | 37\% | 43 |
| Multifamily Housing (Low-Rise) | 220 | 299 | DU | 157 | 20\% | 31 | -- | -- | 126 | 63\% | 79 | 37\% | 47 |
| Retail | 820 | 54 | TSF | 344 | 20\% | 69 | 34\% | 94 | 181 | 48\% | 87 | 52\% | 94 |
| Weekday PM Pea | ak Ho | Tota |  | 645 |  | 129 |  | 94 | 422 |  | 238 |  | 184 |

### 4.2.2 Trip Capture

Internal capture trips were estimated based on ITE methodologies. Copies of the internal capture worksheets are included in the appendix. Based on the proposed land uses, the development is expected to retain $1 \%$ of trips during the AM peak hour and 20\% during the PM peak hour. Daily capture rates were not available; a $10 \%$ daily capture rate was assumed, the average of the AM and the PM peak hour trip capture rates.

### 4.2.3 Pass-by Trips

Based on ITE pass-by rates of $34 \%$ for ITE Land Use Code 820, the proposed commercial development's respective land use is expected to attract approximately 94 pass-by trips during the PM peak hour. ITE does not have pass-by rates for the daily or AM peak hour. No pass-by trips were assumed in the AM peak hour analysis.

### 4.2.4 Modal Split

For the traffic analysis purposes, all trips generated by the development were assumed to be made by personal and commercial vehicles.

### 4.2.5 Trip Distribution and Assignment

Site traffic was distributed and assigned to the external roadway system based on current travel patterns, site layout, and the general location of the site within the area. Figure 4.1 summarizes the expected site traffic distribution patterns. Figure 4.2 summarizes the estimated build-out AM and PM peak hour site traffic.

### 4.3 Total Traffic

The site traffic is then added to the 2040 background traffic as determined above to obtain the 2040 total traffic. In addition, trips were added to the inflow and outflow movements affecting the southwest leg of the Payette Street and SH 55 intersection to account for a potential, small development southwest of the site. Table 4.2 summarizes the build-out site traffic percentage estimate at the intersection of Riverview Parkway and SH 55. Figure 4.3 summarizes the estimated 2040 build-out year AM and PM peak hour total traffic.

Table 4.2 - Build-Out Site Traffic Percentage of 2040 Total Traffic

|  | Intersection | \% Site Traffic of 2040 Total Traffic |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | PM Peak | Average |  |
| 1 | Riverview Parkway <br> and <br> SH 55 | $22 \%$ | $17 \%$ | $19 \%$ |
| 2 | Payette Street <br> and <br> SH 55 | $30 \%$ | $23 \%$ | $26 \%$ |

Figure 4.1 - Site Traffic Primary Trip Distribution Patterns


Figure 4.2 - 2040 Build-Out Year Peak Hour Site Traffic


Figure 4.3 - 2040 Build-Out Year Peak Hour Total Traffic


### 4.4 Intersection Operations

To determine the 2040 total traffic impacts, the study area intersections were analyzed with the existing intersection control and lane configuration or with the preceding improvements needed to mitigate 2040 background traffic. Traffic impacts were evaluated with two proposed site accesses on SH 55 as shown in the preliminary site plan. Additionally, the traffic impacts were also evaluated with the site having only one access on SH 55. Northeastbound right-turn lanes are needed at the Riverview Parkway/Ponderosa Street and Payette Street intersections on SH 55 with 2040 total traffic and were included in the analysis. Copies of the analysis reports are included in the appendix. Table 4.3 and Table 4.4 summarizes the intersection capacity analysis results. The Riverview Parkway/Ponderosa Street and SH 55 intersection is expected to exceed ITD's minimum operational thresholds under 2040 build-out total traffic conditions for both site access scenarios.

Table 4.3 - Intersection Operations - 2040 Build-Out Year Total Traffic (Two SH 55 Accesses)

| Intersection |  | Control / Lane | Intersection or Lane Group | AM Peak Hour |  |  | PM Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS |  | Delay [s/veh] | v/c <br> Ratio | LOS | Delay [s/veh] | v/c <br> Ratio |
| (1) | Riverview Parkway /Ponderosa Street and SH 55 |  |  | SEL | A | 9 | 0.08 | A | 10 | 0.18 |
|  |  | SET |  | - | - | - | - | - | - |
|  |  | SER |  | - | - | - | - | - | - |
|  |  | NWL |  | A | 8 | $<0.01$ | A | 10 | 0.01 |
|  |  | NWT |  | - | - | - | - | - | - |
|  |  | NWTR |  | - | - | - | - | - | - |
|  |  | NEB |  | F | 55 | 0.36 | F | 211 | 0.67 |
|  |  | SWB |  | C | 19 | 0.42 | F | 65 | 0.73 |
| (2) | Payette Street and SH 55 |  | SEL | A | 10 | 0.10 | A | 10 | 0.12 |
|  |  |  | SETR | - | - | - | - | - | - |
|  |  |  | NWB | A | 8 | < 0.01 | B | 10 | 0.01 |
|  |  |  | NEB | C | 19 | 0.04 | D | 27 | 0.06 |
|  |  |  | SWB | C | 18 | 0.25 | C | 25 | 0.42 |

Table 4.4 - Intersection Operations - 2040 Build-Out Year Total Traffic (One SH 55 Access)

| Intersection |  | Control / Lane | Intersection or Lane Group | AM Peak Hour |  |  | PM Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS |  | Delay [s/veh] | v/c Ratio | LOS | Delay [s/veh] | $\begin{gathered} \text { v/c } \\ \text { Ratio } \end{gathered}$ |
| (1) | Riverview Parkway /Ponderosa Street and SH 55 |  |  | SEL | A | 9 | 0.17 | B | 11 | 0.29 |
|  |  |  | SET | - | - | - | - | - | - |
|  |  |  | SER | - | - | - | - | - | - |
|  |  |  | NWL | A | 8 | < 0.01 | A | 10 | 0.01 |
|  |  |  | NWT | - | - | - | - | - | - |
|  |  | Kip | NWR | - | - | - | - | - | - |
|  |  |  | NEB | F | 157 | 0.70 | F | 620 | 1.35 |
|  |  |  | SWB | D | 32 | 0.70 | F | 474 | 1.87 |

### 4.5 Intersection Mitigation

## Riverview Parkway/Ponderosa Street and SH 55 Intersection

The Riverview Parkway/Ponderosa Street and SH 55 intersection is expected to exceed ITD's minimum operational thresholds as an unsignalized intersection with 2040 total traffic. Three mitigation improvement options were evaluated and the results are summarized in Table 4.5 and Table 4.6. The mitigation options and results are:

E Single-lane roundabout

- The roundabout is expected to operate at LOS B or better under 2040 build-out year peak hour total traffic conditions with one or two site accesses on SH 55
Traffic signal with left-turn lanes on all approaches
- The signal is expected to operate at LOS A under 2040 build-out year peak hour total traffic conditions for both site access scenarios
Restricted Crossing U-Turn (RCUT) intersection - RCUT intersection alternative would allow right-in, right-out, and left-in movements only, and prohibits left-turn and through movements from the proposed access and Riverview Parkway. These movements will be accommodated by requiring the drivers to make a right-turn onto SH 55 and then make a U-turn after the intersection. A loon will need to be constructed on SH 55400 to 1,000 feet southeast of the intersection to accommodate U-turns. Additional widenings on SH 55 will be needed to include a southeast-bound U-turn lane. The Payette Street intersection will also need to be widened to include a loon to accommodate U-turns.
- All movements are expected to operate at LOS C or better with a v/c ratio of 0.38 or less under 2040 build-out year total traffic conditions for both site access scenarios

These improvement options are expected to mitigate 2040 total traffic to meet ITD's minimum operational thresholds for the summer peak hours. The preferred alternative will need to be studied further and worked out among ITD, the City of Cascade, and the developer.

Traffic Impact Study
1
The River District - Cascade, Idaho
Table 4.5 - Intersection Operations - 2040 Build-Out Year Total Traffic Mitigation (Two SH 55 Accesses)

| Intersection |  | Control / Lane | Intersection or Lane Group | AM Peak Hour |  |  | PM Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS |  | Delay [s/veh] | v/c <br> Ratio | LOS | Delay [s/veh] | v/c <br> Ratio |
| (1) | Riverview Parkway and SH 55 |  | $\begin{aligned} & x, x \\ & x \text { x, } \\ & x, y \end{aligned}$ | Intersection | A | 8 | - | B | 14 | - |
|  |  | SE |  | A | 7 | 0.39 | C | 17 | 0.80 |
|  |  | NW |  | A | 8 | 0.49 | B | 12 | 0.64 |
|  |  | NE |  | A | 5 | 0.05 | A | 8 | 0.05 |
|  |  | SW |  | A | 8 | 0.25 | A | 8 | 0.20 |
|  |  |  | Intersection | A | 7 | 0.38 | A | 10 | 0.69 |
|  |  |  | SEL | A | 6 | 0.12 | A | 8 | 0.38 |
|  |  |  | SETR | A | 6 | 0.57 | A | 6 | 0.71 |
|  |  |  | NWL | A | 7 | < 0.01 | A | 9 | 0.02 |
|  |  |  | NWTR | A | 5 | 0.32 | B | 13 | 0.82 |
|  |  |  | NEL | B | 11 | 0.09 | C | 21 | 0.11 |
|  |  |  | NETR | A | 8 | 0.01 | B | 18 | 0.01 |
|  |  |  | SWL | A | 8 | 0.03 | B | 18 | 0.08 |
|  |  |  | SWTR | B | 11 | 0.61 | C | 23 | 0.62 |
|  |  | se | SEL | A | 9 | 0.08 | A | 10 | 0.19 |
|  |  |  | SET | - | - | - | - | - | - |
|  |  |  | SER | - | - | - | - | - | - |
|  |  |  | NWL | A | 8 | < 0.01 | A | 10 | 0.01 |
|  |  |  | NWT | - | - | - | - | - | - |
|  |  |  | NWR | - | - | - | - | - | - |
|  |  |  | NER | B | 11 | 0.06 | C | 16 | 0.07 |
|  |  |  | SWR | C | 17 | 0.38 | C | 17 | 0.35 |
| (2) | $\begin{aligned} & \text { Payette Street } \\ & \text { and } \\ & \text { SH } 55 \end{aligned}$ | Re | SEL | A | 10 | 0.10 | A | 10 | 0.12 |
|  |  |  | SETR | - | - | - | - | - | - |
|  |  |  | NWL | A | 9 | 0.03 | B | 11 | 0.08 |
|  |  |  | NWT | - | - | - | - | - | - |
|  |  |  | NWR | - | - | - | - | - | - |
|  |  |  | NER | B | 11 | 0.02 | C | 18 | 0.03 |
|  |  |  | SWR | C | 16 | 0.21 | C | 17 | 0.26 |

Traffic Impact Study
1
The River District - Cascade, Idaho
Table 4.6 - Intersection Operations - 2040 Build-Out Year Total Traffic Mitigation (One SH 55 Access)

| Intersection |  | Control / Lane | Intersection or Lane Group | AM Peak Hour |  |  | PM Peak Hour |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | LOS |  | Delay [s/veh] | $\begin{gathered} \text { v/c } \\ \text { Ration } \end{gathered}$ | LOS | Delay [s/veh] | v/c |
| (1) | Riverview Parkway and SH 55 |  |  | Intersection | A | 8 | - | C | 19 | - |
|  |  | SE |  | A | 7 | 0.44 | C | 23 | 0.88 |
|  |  | NW |  | A | 9 | 0.52 | C | 16 | 0.70 |
|  |  | NE |  | A | 6 | 0.06 | A | 9 | 0.06 |
|  |  | SW |  | A | 10 | 0.38 | B | 11 | 0.38 |
|  |  |  | Intersection | A | 10 | 0.48 | B | 14 | 0.72 |
|  |  |  | SEL | B | 12 | 0.38 | B | 12 | 0.66 |
|  |  |  | SETR | A | 6 | 0.43 | A | 6 | 0.71 |
|  |  |  | NWL | A | 8 | < 0.01 | A | 8 | 0.02 |
|  |  |  | NWTR | A | 7 | 0.59 | A | 7 | 0.86 |
|  |  |  | NEL | B | 18 | 0.14 | B | 18 | 0.12 |
|  |  |  | NETR | B | 12 | 0.01 | B | 12 | 0.01 |
|  |  |  | SWL | B | 13 | 0.06 | B | 13 | 0.13 |
|  |  |  | SWTR | B | 17 | 0.71 | B | 17 | 0.74 |
|  |  | $)^{\text {RCUT }}$ | SEL | A | 9 | 0.17 | B | 11 | 0.30 |
|  |  |  | SET | - | - | - | - | - | - |
|  |  |  | SER | - | - | - | - | - | - |
|  |  |  | NWL | A | 8 | < 0.01 | A | 10 | 0.01 |
|  |  |  | NWT | - | - | - | - | - | - |
|  |  |  | NWR | - | - | - | - | - | - |
|  |  |  | NER | B | 11 | 0.06 | C | 16 | 0.07 |
|  |  |  | SWR | C | 20 | 0.54 | C | 22 | 0.55 |
| (2) | $\begin{aligned} & \text { Payette Street } \\ & \text { and } \\ & \text { SH } 55 \end{aligned}$ | RCUT | SETR | - | - | - | - | - | - |
|  |  |  | NWL | A | 9 | 0.03 | B | 11 | 0.08 |
|  |  |  | NWT | - | - | - | - | - | - |
|  |  |  | NER | B | 12 | 0.02 | C | 20 | 0.04 |

### 4.6 Site Access and Circulation

The River District is proposing two accesses on SH 55. Payette Street, the northwest access, is proposed as a full access located approximately 400 feet northwest of Riverview Driveway, where existing approaches are constructed on both sides of SH 55. Ponderosa Street, the southeast access, is set to align with Riverview Driveway, the existing roadway into the future Riverview Park Subdivision south of the site. Minimum spacing requirements for the site accesses on SH 55 are based on ITD IDAPA 39.03.42 minimum access spacing requirements on SH 55, a Regional Route located in a transitional area with speeds greater than 35 mph . According to IDAPA access spacing requirements, the minimum separation distances are as follows:

E 2,640 feet $(1 / 2 \mathrm{mile})$ between signals

- 1,320 feet ( $1 / 4 \mathrm{mile}$ ) between public roads
- 690 feet driveway distance separation from the nearest upstream public road intersection
- 360 feet driveway distance separation from the nearest downstream public road intersection
- 360 feet driveway distance separation from nearest unsignalized access other than a public road

The accesses proposed into The River District are assumed to be public streets. Therefore, the separation distance between Payette Street and Ponderosa Street does not meet ITD IDAPA spacing requirements for public roads but does meet ITD IDAPA driveway distance separation requirements.

As discussed in the previous sections, the Payette Street intersection is expected to meet ITD's minimum operational thresholds. A northwest-bound right-turn is needed to mitigate the 2040 total traffic impacts.

The Riverview Parkway/Ponderosa Street and SH 55 intersection is expected to exceed ITD's minimum operational thresholds as an unsignalized intersection. Based on a phasing analysis, when two accesses are permitted onto SH 55 , the intersection is expected to fail when the development generates approximately 144 PM peak hour trips, equivalent to 144 dwelling units. This finding assumes the background traffic increases at a $2 \%$ annual growth rate and the proposed Riverview Park Subdivision is constructed.

## APPENDIX A: TRAFFIC COUNTS

# L2 Data Collection 

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name : SH-55 \& Riverview Parkway AM
Site Code : 00000000
Start Date : 11/21/2019
Page No : 1

| Groups Printed- General Traffic |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SH-55From Southeast |  |  |  | Riverview Parkway From Southwest |  |  |  | SH-55 <br> From Northwest |  |  |  |  |
| Start Time | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Int. Total |
| 07:00 AM | 14 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 17 | 0 | 17 | 31 |
| 07:15 AM | 32 | 0 | 0 | 32 | 0 | 0 | 0 | 0 | 1 | 13 | 0 | 14 | 46 |
| 07:30 AM | 31 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 1 | 14 | 0 | 15 | 46 |
| 07:45 AM | 47 | 1 | 0 | 48 | 0 | 1 | 0 | 1 | 2 | 25 | 0 | 27 | 76 |
| Total | 124 | 1 | 0 | 125 | 0 | 1 | 0 | 1 | 4 | 69 | 0 | 73 | 199 |
| 08:00 AM | 34 | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 3 | 18 | 0 | 21 | 55 |
| 08:15 AM | 43 | 1 | 0 | 44 | 0 | 2 | 0 | 2 | 0 | 33 | 0 | 33 | 79 |
| 08:30 AM | 36 | 0 | 0 | 36 | 0 | 1 | 0 | 1 | 0 | 28 | 0 | 28 | 65 |
| 08:45 AM | 53 | 0 | 0 | 53 | 0 | 0 | 0 | 0 | 1 | 41 | 0 | 42 | 95 |
| Total | 166 | 1 | 0 | 167 | 0 | 3 | 0 | 3 | 4 | 120 | 0 | 124 | 294 |
| Grand Total | 290 | 2 | 0 | 292 | 0 | 4 | 0 | 4 | 8 | 189 | 0 | 197 | 493 |
| Apprch \% | 99.3 | 0.7 | 0 |  | 0 | 100 | 0 |  | 4.1 | 95.9 | 0 |  |  |
| Total \% | 58.8 | 0.4 | 0 | 59.2 | 0 | 0.8 | 0 | 0.8 | 1.6 | 38.3 | 0 | 40 |  |



## L2 Data Collection

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name: SH-55 \& Riverview Parkway AM
Site Code : 00000000
Start Date : 11/21/2019
Page No : 2

|  | SH-55From Southeast |  |  |  | Riverview Parkway From Southwest |  |  |  | SH-55From Northwest |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Int. Total |
| Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Peak Hour for Entire Intersection Begins at 08:00 AM |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 08:00 AM | 34 | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 3 | 18 | 0 | 21 | 55 |
| 08:15 AM | 43 | 1 | 0 | 44 | 0 | 2 | 0 | 2 | 0 | 33 | 0 | 33 | 79 |
| 08:30 AM | 36 | 0 | 0 | 36 | 0 | 1 | 0 | 1 | 0 | 28 | 0 | 28 | 65 |
| 08:45 AM | 53 | 0 | 0 | 53 | 0 | 0 | 0 | 0 | 1 | 41 | 0 | 42 | 95 |
| Total Volume | 166 | 1 | 0 | 167 | 0 | 3 | 0 | 3 | 4 | 120 | 0 | 124 | 294 |
| \% App. Total | 99.4 | 0.6 | 0 |  | 0 | 100 | 0 |  | 3.2 | 96.8 | 0 |  |  |
| PHF | . 783 | . 250 | . 000 | . 788 | . 000 | . 375 | . 000 | . 375 | . 333 | . 732 | . 000 | . 738 | . 774 |



## L2 Data Collection

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name : SH-55 \& Riverview Parkway AM
Site Code : 00000000
Start Date : 11/21/2019
Page No : 3

|  | SH-55 <br> From Southeast |  |  |  | Riverview Parkway From Southwest |  |  |  | SH-55 <br> From Northwest |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total | Right | Thru | Peds | App. Total | Int. Total |

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

|  | 08:00 AM |  |  |  | 07:45 AM |  |  |  | 08:00 AM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +0 mins. | 34 | 0 | 0 | 34 | 0 | 1 | 0 | 1 | 3 | 18 | 0 | 21 |
| +15 mins. | 43 | 1 | 0 | 44 | 0 | 0 | 0 | 0 | 0 | 33 | 0 | 33 |
| +30 mins. | 36 | 0 | 0 | 36 | 0 | 2 | 0 | 2 | 0 | 28 | 0 | 28 |
| + 45 mins. | 53 | 0 | 0 | 53 | 0 | 1 | 0 | 1 | 1 | 41 | 0 | 42 |
| Total Volume | 166 | 1 | 0 | 167 | 0 | 4 | 0 | 4 | 4 | 120 | 0 | 124 |
| \% App. Total | 99.4 | 0.6 | 0 |  | 0 | 100 | 0 |  | 3.2 | 96.8 | 0 |  |
| PHF | . 783 | . 250 | . 000 | . 788 | . 000 | . 500 | . 000 | . 500 | . 333 | . 732 | . 000 | . 738 |



## L2 Data Collection

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name: SH-55 \& Riverview Parkway AM
Site Code : 00000000
Start Date : 11/21/2019
Page No : 4

Image 1

## SH-55 and Riverview Parkway - 'The Depot' Access

Cascade, Idaho


# L2 Data Collection 

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name : SH-55 \& Riverview Parkway PM
Site Code : 00000000
Start Date : 11/20/2019
Page No : 1

| Groups Printed- General Traffic |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SH-55From Southeast |  |  |  | Riverview Parkway From Southwest |  |  |  | SH-55 <br> From Northwest |  |  |  |  |
| Start Time | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total | Int. Total |
| 04:00 PM | 0 | 52 | 0 | 52 | 36 | 0 | 0 | 36 | 0 | 4 | 0 | 4 | 92 |
| 04:15 PM | 0 | 40 | 0 | 40 | 44 | 0 | 0 | 44 | 0 | 1 | 0 | 1 | 85 |
| 04:30 PM | 0 | 34 | 0 | 34 | 43 | 0 | 0 | 43 | 0 | 1 | 0 | 1 | 78 |
| 04:45 PM | 0 | 31 | 0 | 31 | 37 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 68 |
| Total | 0 | 157 | 0 | 157 | 160 | 0 | 0 | 160 | 0 | 6 | 0 | 6 | 323 |
| 05:00 PM | 0 | 41 | 0 | 41 | 27 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 68 |
| 05:15 PM | 0 | 58 | 0 | 58 | 40 | 0 | 0 | 40 | 0 | 1 | 0 | 1 | 99 |
| 05:30 PM | 1 | 48 | 0 | 49 | 35 | 1 | 0 | 36 | 0 | 1 | 0 | 1 | 86 |
| 05:45 PM | 0 | 36 | 0 | 36 | 43 | 0 | 0 | 43 | 0 | 0 | 0 | 0 | 79 |
| Total | 1 | 183 | 0 | 184 | 145 | 1 | 0 | 146 | 0 | 2 | 0 | 2 | 332 |
| Grand Total | 1 | 340 | 0 | 341 | 305 | 1 | 0 | 306 | 0 | 8 | 0 | 8 | 655 |
| Apprch \% | 0.3 | 99.7 | 0 |  | 99.7 | 0.3 | 0 |  | 0 | 100 | 0 |  |  |
| Total \% | 0.2 | 51.9 | 0 | 52.1 | 46.6 | 0.2 | 0 | 46.7 | 0 | 1.2 | 0 | 1.2 |  |



## L2 Data Collection

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name: SH-55 \& Riverview Parkway PM
Site Code : 00000000
Start Date : 11/20/2019
Page No : 2

|  | SH-55From Southeast |  |  |  | Riverview Parkway From Southwest |  |  |  | SH-55From Northwest |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total | Int. Total |
| Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Peak Hour for Entire Intersection Begins at 05:00 PM |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 05:00 PM | 0 | 41 | 0 | 41 | 27 | 0 | 0 | 27 | 0 | 0 | 0 | 0 | 68 |
| 05:15 PM | 0 | 58 | 0 | 58 | 40 | 0 | 0 | 40 | 0 | 1 | 0 | 1 | 99 |
| 05:30 PM | 1 | 48 | 0 | 49 | 35 | 1 | 0 | 36 | 0 | 1 | 0 | 1 | 86 |
| 05:45 PM | 0 | 36 | 0 | 36 | 43 | 0 | 0 | 43 | 0 | 0 | 0 | 0 | 79 |
| Total Volume | 1 | 183 | 0 | 184 | 145 | 1 | 0 | 146 | 0 | 2 | 0 | 2 | 332 |
| \% App. Total | 0.5 | 99.5 | 0 |  | 99.3 | 0.7 | 0 |  | 0 | 100 | 0 |  |  |
| PHF | . 250 | . 789 | . 000 | . 793 | . 843 | . 250 | . 000 | . 849 | . 000 | . 500 | . 000 | . 500 | . 838 |



## L2 Data Collection

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name : SH-55 \& Riverview Parkway PM
Site Code : 00000000
Start Date : 11/20/2019
Page No : 3

|  | SH-55From Southeast |  |  |  | Riverview Parkway From Southwest |  |  |  | SH-55From Northwest |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Time | Right | Thru | Peds | App. Total | Thru | Left | Peds | App. Total | Right | Left | Peds | App. Total | Int. Total |

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

|  | 05:00 PM |  |  |  | 04:00 PM |  |  |  | 04:00 PM |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| +0 mins. | 0 | 41 | 0 | 41 | 36 | 0 | 0 | 36 | 0 | 4 | 0 | 4 |
| +15 mins. | 0 | 58 | 0 | 58 | 44 | 0 | 0 | 44 | 0 | 1 | 0 | 1 |
| +30 mins. | 1 | 48 | 0 | 49 | 43 | 0 | 0 | 43 | 0 | 1 | 0 | 1 |
| +45 mins. | 0 | 36 | 0 | 36 | 37 | 0 | 0 | 37 | 0 | 0 | 0 | 0 |
| Total Volume | 1 | 183 | 0 | 184 | 160 | 0 | 0 | 160 | 0 | 6 | 0 | 6 |
| \% App. Total | 0.5 | 99.5 | 0 |  | 100 | 0 | 0 |  | 0 | 100 | 0 |  |
| PHF | . 250 | . 789 | . 000 | . 793 | . 909 | . 000 | . 000 | . 909 | . 000 | . 375 | . 000 | . 375 |



## L2 Data Collection

L2DataCollection.com
(208) 860-7554 Utah (801) 413-2993

Study: CR0052
Intersection: SH-55 / Riverview Pkwy
City, State: Cascade, Idaho
Control: Stop Sign

File Name: SH-55 \& Riverview Parkway PM
Site Code : 00000000
Start Date : 11/20/2019
Page No : 4

Image 1

## SH-55 and Riverview Parkway - 'The Depot' Access

Cascade, Idaho


Road, Monthly Hourly Volume for July 2018
Site names:
043 Valley
Seasonal Factor Grp
Axle Factor Grp:
Funct Class: $\quad$ R Principal Arterial - Other

|  | 00:00 | 01:00 | 02:00 | 03:00 | 04:00 | 05:00 | 06:00 | 07:00 | 08:00 | 09:00 | 10:00 | 11:00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 19 | 13 | 7 | 20 | 33 | 80 | 178 | 320 | 358 | 403 | 526 | 497 |
| 02 | 30 | 11 | 7 | 12 | 19 | 52 | 144 | 270 | 323 | 362 | 453 | 489 |
| 03 | 36 | 21 | 6 | 10 | 17 | 52 | 127 | 237 | 324 | 387 | 533 | 665 |
| 04 | 91 | 44 | 26 | 18 | 24 | 30 | 85 | 172 | 340 | 588 | 740 | 610 |
| 05 | 98 | 30 | 21 | 9 | 26 | 57 | 112 | 220 | 318 | 540 | 659 | 823 |
| 06 | 41 | 19 | 11 | 8 | 13 | 40 | 89 | 200 | 350 | 575 | 779 | 913 |
| 07 | 42 | 20 | 16 | 8 | 16 | 41 | 124 | 251 | 459 | 645 | 719 | 917 |
| 08 | 20 | 12 | 10 | 6 | 34 | 89 | 198 | 365 | 439 | 482 | 573 | 604 |
| 09 | 20 | 14 | 9 | 13 | 13 | 52 | 135 | 257 | 306 | 375 | 402 | 443 |
| 10 | 13 | 8 | 9 | 7 | 23 | 51 | 155 | 257 | 314 | 381 | 431 | 473 |
| 11 | 19 | 12 | 12 | 12 | 18 | 55 | 169 | 293 | 380 | 376 | 460 | 499 |
| 12 | 25 | 14 | 9 | 11 | 22 | 42 | 135 | 283 | 338 | 461 | 552 | 713 |
| 13 | 38 | 19 | 11 | 6 | 9 | 32 | 98 | 203 | 304 | 470 | 551 | 650 |
| 14 | 33 | 16 | 9 | 8 | 11 | 30 | 62 | 162 | 310 | 473 | 724 | 847 |
| 15 | 23 | 7 | 9 | 14 | 40 | 103 | 205 | 303 | 367 | 478 | 556 | 589 |
| 16 | 11 | 6 | 10 | 11 | 20 | 38 | 159 | 242 | 321 | 376 | 386 | 420 |
| 17 | 25 | 11 | 10 | 9 | 13 | 42 | 137 | 256 | 349 | 370 | 434 | 477 |
| 18 | 30 | 6 | 10 | 10 | 15 | 54 | 131 | 266 | 346 | 421 | 503 | 616 |
| 19 | 24 | 17 | 11 | 14 | 14 | 50 | 129 | 231 | 356 | 476 | 597 | 654 |
| 20 | 47 | 25 | 23 | 13 | 19 | 30 | 96 | 206 | 331 | 449 | 679 | 746 |
| 21 | 33 | 25 | 19 | 6 | 16 | 20 | 68 | 159 | 316 | 515 | 657 | 912 |
| 22 | 22 | 13 | 8 | 17 | 27 | 87 | 155 | 331 | 404 | 434 | 579 | 625 |
| 23 | 18 | 16 | 10 | 18 | 23 | 51 | 145 | 222 | 310 | 336 | 407 | 505 |
| 24 | 13 | 21 | 17 | 8 | 18 | 42 | 162 | 295 | 370 | 402 | 446 | 573 |
| 25 | 12 | 5 | 8 | 8 | 20 | 52 | 153 | 259 | 321 | 410 | 472 | 603 |
| 26 | 24 | 19 | 16 | 8 | 17 | 54 | 116 | 268 | 342 | 470 | 577 | 661 |
| 27 | 43 | 18 | 8 | 11 | 14 | 26 | 67 | 192 | 381 | 558 | 605 | 781 |
| 28 | 29 | 20 | 9 | 6 | 11 | 26 | 74 | 153 | 322 | 540 | 717 | 909 |
| 29 | 22 | 13 | 9 | 16 | 24 | 85 | 210 | 287 | 401 | 462 | 534 | 529 |
| 30 | 18 | 9 | 14 | 7 | 16 | 58 | 134 | 250 | 305 | 365 | 435 | 463 |
| 31 | 25 | 13 | 10 | 7 | 15 | 40 | 140 | 242 | 328 | 364 | 507 | 472 |

Two-Way Hourly Sum for General Weekdays Two-Way Hourly Daily Average

265
3444

November 2018 Two-Way Hourly Daily Average 176
AM Seasonal Adjustment Factor 1.96

| 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 | 19:00 | 20:00 | 21:00 | 22:00 | 23:00 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 377 | 604 | 554 | 503 | 519 | 487 | 369 | 261 | 213 | 146 | 80 | 26 | 6,593 |
| 502 | 492 | 533 | 582 | 501 | 579 | 450 | 352 | 290 | 218 | 108 | 48 | 6,827 |
| 742 | 721 | 752 | 833 | 785 | 848 | 743 | 686 | 588 | 481 | 269 | 186 | 10,049 |
| 789 | 731 | 602 | 490 | 389 | 362 | 354 | 267 | 238 | 174 | 80 | 356 | 7,600 |
| 830 | 870 | 806 | 725 | 682 | 722 | 578 | 496 | 376 | 257 | 135 | 68 | 9,458 |
| 950 | 865 | 793 | 743 | 618 | 628 | 524 | 420 | 354 | 269 | 132 | 66 | 9,400 |
| 891 | 841 | 738 | 693 | 596 | 755 | 566 | 417 | 270 | 146 | 110 | 39 | 9,320 |
| 561 | 523 | 513 | 563 | 551 | 418 | 367 | 198 | 198 | 117 | 59 | 29 | 6,929 |
| 453 | 430 | 418 | 433 | 426 | 454 | 346 | 226 | 182 | 105 | 69 | 38 | 5,619 |
| 413 | 488 | 487 | 495 | 406 | 470 | 333 | 227 | 182 | 168 | 76 | 44 | 5,911 |
| 519 | 557 | 588 | 581 | 564 | 573 | 426 | 348 | 279 | 208 | 112 | 71 | 7,131 |
| 678 | 666 | 701 | 758 | 761 | 706 | 642 | 544 | 406 | 293 | 141 | 91 | 8,992 |
| 664 | 679 | 626 | 641 | 507 | 441 | 451 | 286 | 296 | 247 | 149 | 68 | 7,446 |
| 806 | 845 | 807 | 684 | 748 | 681 | 532 | 430 | 256 | 176 | 92 | 39 | 8,781 |
| 553 | 547 | 526 | 513 | 521 | 494 | 316 | 223 | 192 | 100 | 61 | 21 | 6,761 |
| 414 | 452 | 455 | 493 | 438 | 446 | 328 | 202 | 155 | 131 | 89 | 46 | 5,649 |
| 539 | 500 | 482 | 528 | 515 | 468 | 311 | 269 | 223 | 126 | 80 | 46 | 6,220 |
| 594 | 537 | 560 | 595 | 574 | 578 | 456 | 333 | 237 | 189 | 106 | 80 | 7,247 |
| 725 | 673 | 718 | 757 | 710 | 687 | 618 | 501 | 378 | 262 | 141 | 80 | 8,823 |
| 719 | 684 | 689 | 661 | 588 | 544 | 474 | 326 | 273 | 260 | 147 | 81 | 8,110 |
| 939 | 874 | 829 | 738 | 765 | 683 | 572 | 445 | 300 | 213 | 72 | 48 | 9,224 |
| 622 | 574 | 587 | 552 | 484 | 497 | 356 | 245 | 178 | 157 | 58 | 33 | 7,045 |
| 477 | 493 | 522 | 470 | 412 | 408 | 330 | 244 | 206 | 134 | 75 | 40 | 5,872 |
| 507 | 518 | 478 | 508 | 498 | 499 | 401 | 247 | 192 | 144 | 95 | 53 | 6,507 |
| 561 | 563 | 584 | 628 | 551 | 602 | 412 | 348 | 271 | 200 | 113 | 61 | 7,217 |
| 732 | 734 | 793 | 733 | 875 | 787 | 700 | 568 | 395 | 339 | 158 | 80 | 9,466 |
| 647 | 628 | 549 | 627 | 597 | 497 | 406 | 331 | 282 | 254 | 120 | 58 | 7,700 |
| 835 | 839 | 820 | 794 | 682 | 653 | 536 | 430 | 276 | 175 | 92 | 37 | 8,985 |
| 507 | 584 | 539 | 536 | 548 | 459 | 297 | 215 | 153 | 117 | 77 | 36 | 6,660 |
| 453 | 490 | 447 | 457 | 412 | 384 | 337 | 206 | 131 | 125 | 85 | 31 | 5,632 |
| 505 | 496 | 482 | 458 | 467 | 452 | 318 | 217 | 177 | 149 | 81 | 34 | 5,999 |

Two-Way Hourly Sum for General Weekdays
5921 Two-Way Hourly Daily Average

November 2018 Two-Way Hourly Daily Average PM Seasonal Adjustment Factor

Road, Monthly Hourly Volume for November 2018

Site names:
Funct Class:
Location:

043 Valley R Principal Arterial - Other

SH-55 3.6 Mi. S of Roseberry Rd

|  | 00:00 | 01:00 | 02:00 | 03:00 | 04:00 | 05:00 | 06:00 | 07:00 | 08:00 | 09:00 | 10:00 | 11:00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 3 | 4 | 0 | 3 | 4 | 28 | 57 | 122 | 113 | 134 | 221 | 240 |
| 02 | 8 | 3 | 4 | 2 | 13 | 15 | 46 | 131 | 222 | 205 | 275 | 326 |
| 03 | 17 | 6 | 8 | 5 | 8 | 21 | 36 | 48 | 92 | 102 | 144 | 292 |
| 05 | 4 | 0 | 3 | 1 | 5 | 20 | 66 | 185 | 186 | 225 | 217 | 233 |
| 06 | 10 | 2 | 5 | 10 | 12 | 20 | 99 | 154 | 171 | 204 | 218 | 209 |
| 07 | 9 | 3 | 3 | 5 | 8 | 28 | 90 | 159 | 194 | 214 | 190 | 232 |
| 08 | 5 | 6 | 2 | 9 | 13 | 33 | 95 | 172 | 184 | 216 | 245 | 239 |
| 09 | 12 | 8 | 7 | 5 | 16 | 34 | 77 | 183 | 172 | 236 | 301 | 354 |
| 10 | 17 | 15 | 4 | 7 | 11 | 23 | 43 | 70 | 147 | 177 | 285 | 292 |
| 11 | 13 | 4 | 5 | 4 | 6 | 13 | 22 | 60 | 100 | 196 | 335 | 382 |
| 12 | 13 | 3 | 4 | 5 | 15 | 31 | 62 | 155 | 183 | 245 | 226 | 245 |
| 13 | 10 | 3 | 3 | 13 | 17 | 26 | 84 | 186 | 203 | 193 | 230 | 216 |
| 14 | 6 | 5 | 1 | 1 | 18 | 30 | 90 | 171 | 209 | 221 | 252 | 228 |
| 15 | 4 | 4 | 1 | 5 | 4 | 24 | 55 | 151 | 220 | 213 | 228 | 228 |
| 16 | 1 | 3 | 0 | 4 | 4 | 11 | 60 | 155 | 170 | 253 | 255 | 276 |
| 17 | 10 | 11 | 2 | 10 | 6 | 15 | 36 | 53 | 116 | 193 | 264 | 309 |
| 18 | 11 | 9 | 3 | 1 | 9 | 9 | 18 | 50 | 71 | 159 | 258 | 336 |
| 19 | 9 | 1 | 7 | 8 | 10 | 13 | 89 | 158 | 195 | 236 | 308 | 261 |
| 20 | 8 | 4 | 6 | 2 | 9 | 19 | 84 | 147 | 152 | 199 | 251 | 292 |
| 21 | 11 | 6 | 3 | 1 | 5 | 24 | 54 | 119 | 123 | 229 | 307 | 330 |
| 22 | 14 | 18 | 8 | 6 | 11 | 16 | 12 | 23 | 68 | 165 | 199 | 208 |
| 24 | 2 | 4 | 3 | 1 | 7 | 9 | 29 | 29 | 52 | 138 | 298 | 390 |
| 25 | 6 | 6 | 2 | 1 | 6 | 17 | 25 | 34 | 53 | 140 | 348 | 469 |
| 26 | 3 | 4 | 4 | 3 | 8 | 27 | 78 | 145 | 177 | 187 | 220 | 242 |
| 27 | 13 | 3 | 4 | 4 | 7 | 20 | 84 | 147 | 167 | 167 | 168 | 164 |
| 28 | 4 | 7 | 3 | 6 | 11 | 19 | 62 | 120 | 161 | 153 | 147 | 182 |
| 29 | 6 | 7 | 5 | 7 | 8 | 20 | 79 | 142 | 162 | 163 | 171 | 201 |
| 30 | 7 | 2 | 1 | 7 | 14 | 23 | 53 | 148 | 145 | 168 | 185 | 239 |
| Two-Way Hourly Sum for General Weekdays 1671 1936 <br> Two-Way Hourly Daily Average 152 176 |  |  |  |  |  |  |  |  |  |  |  |  |

Road, Monthly Hourly Volume for November 2018

| 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 | 19:00 | 20:00 | 21:00 | 22:00 | 23:00 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 247 | 274 | 266 | 286 | 295 | 223 | 119 | 70 | 37 | 41 | 24 | 21 | 2,832 |
| 291 | 381 | 395 | 413 | 327 | 164 | 126 | 149 | 91 | 58 | 33 | 25 | 3,703 |
| 296 | 312 | 315 | 341 | 287 | 155 | 134 | 84 | 70 | 73 | 20 | 15 | 2,881 |
| 223 | 211 | 244 | 249 | 266 | 230 | 125 | 75 | 42 | 34 | 20 | 6 | 2,870 |
| 202 | 210 | 223 | 238 | 218 | 202 | 138 | 73 | 67 | 26 | 19 | 9 | 2,739 |
| 222 | 208 | 257 | 258 | 264 | 236 | 149 | 100 | 55 | 39 | 21 | 12 | 2,956 |
| 241 | 239 | 278 | 304 | 295 | 298 | 217 | 136 | 100 | 64 | 36 | 27 | 3,454 |
| 372 | 329 | 379 | 425 | 449 | 401 | 376 | 282 | 152 | 105 | 50 | 25 | 4,750 |
| 363 | 343 | 321 | 324 | 263 | 219 | 154 | 146 | 74 | 48 | 47 | 21 | 3,414 |
| 405 | 435 | 443 | 445 | 394 | 257 | 187 | 122 | 73 | 60 | 23 | 13 | 3,997 |
| 259 | 287 | 244 | 295 | 215 | 260 | 124 | 76 | 66 | 32 | 18 | 16 | 3,079 |
| 229 | 214 | 243 | 234 | 265 | 249 | 137 | 65 | 47 | 35 | 21 | 11 | 2,934 |
| 235 | 247 | 244 | 263 | 237 | 237 | 146 | 85 | 33 | 42 | 17 | 13 | 3,031 |
| 263 | 259 | 293 | 251 | 199 | 196 | 124 | 90 | 62 | 37 | 24 | 11 | 2,946 |
| 305 | 339 | 353 | 416 | 438 | 300 | 242 | 148 | 97 | 79 | 27 | 15 | 3,951 |
| 360 | 384 | 252 | 250 | 249 | 194 | 114 | 67 | 54 | 48 | 25 | 12 | 3,034 |
| 421 | 384 | 392 | 247 | 281 | 168 | 135 | 104 | 76 | 49 | 19 | 6 | 3,216 |
| 328 | 290 | 216 | 246 | 267 | 192 | 109 | 62 | 48 | 45 | 18 | 18 | 3,134 |
| 312 | 314 | 230 | 228 | 292 | 183 | 140 | 75 | 62 | 34 | 20 | 21 | 3,084 |
| 412 | 425 | 425 | 465 | 470 | 235 | 194 | 147 | 62 | 54 | 25 | 26 | 4,152 |
| 210 | 168 | 118 | 129 | 57 | 86 | 52 | 51 | 39 | 73 | 12 | 11 | 1,754 |
| 411 | 409 | 419 | 401 | 316 | 181 | 138 | 62 | 53 | 28 | 24 | 11 | 3,415 |
| 540 | 524 | 460 | 479 | 330 | 196 | 111 | 88 | 38 | 15 | 13 | 7 | 3,908 |
| 235 | 218 | 211 | 243 | 211 | 219 | 101 | 65 | 47 | 37 | 18 | 6 | 2,709 |
| 158 | 161 | 158 | 165 | 159 | 173 | 88 | 59 | 48 | 32 | 23 | 17 | 2,189 |
| 223 | 180 | 150 | 95 | 94 | 138 | 86 | 69 | 35 | 41 | 17 | 12 | 2,015 |
| 171 | 63 | 95 | 152 | 118 | 157 | 81 | 89 | 77 | 44 | 26 | 20 | 2,064 |
| 194 | 232 | 223 | 261 | 240 | 264 | 174 | 160 | 149 | 95 | 37 | 26 | 3,047 |
| Two-Way Hourly Sum for General Weekdays Two-Way Hourly Daily Average |  |  |  | 2436 221 | $\begin{gathered} 2292 \\ 208 \end{gathered}$ |  |  |  |  |  |  |  |

ATR 043
Idaho Transportation Department


## APPENDIX B: 2019 CAPACITY ANALYSIS REPORTS

| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.1 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | $\uparrow$ |  | 1 | 4 | Tr |  |
| Traffic Vol, veh/h | 235 | 4 | 1 | 325 | 3 | 0 |
| Future Vol, veh/h | 235 | 4 | 1 | 325 | 3 | 0 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | 50 | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 2 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 5 | 2 | 2 | 5 | 2 | 2 |
| Mvmt Flow | 261 | 4 | 1 | 361 | 3 | 0 |


| Major/Minor M | Major1 |  | Major2 |  | Minor1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 0 | 0 | 265 | 0 | 626 | 263 |
| Stage 1 | - | - | - | - | 263 | - |
| Stage 2 | - | - | - | - | 363 | - |
| Critical Hdwy | - | - | 4.12 | - | 6.42 | 6.22 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.42 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.42 | - |
| Follow-up Hdwy | - | - | 2.218 | - | 3.518 | 3.318 |
| Pot Cap-1 Maneuver | - | - | 1299 | - | 448 | 776 |
| Stage 1 | - | - | - | - | 781 | - |
| Stage 2 | - | - | - | - | 704 | - |
| Platoon blocked, \% | - | - |  | - |  |  |
| Mov Cap-1 Maneuver | - | - | 1299 | - | 448 | 776 |
| Mov Cap-2 Maneuver | - | - | - | - | 607 | - |
| Stage 1 | - | - | - | - | 781 | - |
| Stage 2 | - | - | - | - | 703 | - |
|  |  |  |  |  |  |  |
| Approach | SE |  | NW |  | NE |  |
| HCM Control Delay, s | 0 |  | 0 |  | 11 |  |
| HCM LOS |  |  |  |  | B |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NELn1 | NWL | NWT | SET | SER |
| Capacity (veh/h) |  | 607 | 1299 | - | - | - |
| HCM Lane V/C Ratio |  | 0.005 | 0.001 | - | - | - |
| HCM Control Delay (s) |  | 11 | 7.8 | - | - | - |
| HCM Lane LOS |  | B | A | - | - | - |
| HCM 95th \%tile Q(veh) |  | 0 | 0 | - | - | - |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | $\uparrow$ |  |  | 4 | Y |  |
| Traffic Vol, veh/h | 489 | 1 | 1 | 388 | 2 | 0 |
| Future Vol, veh/h | 489 | 1 | 1 | 388 | 2 | 0 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | 50 | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 2 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 84 | 84 | 84 | 84 | 84 | 84 |
| Heavy Vehicles, \% | 5 | 2 | 2 | 5 | 2 | 2 |
| Mvmt Flow | 582 | 1 | 1 | 462 | 2 | 0 |


| Major/Minor M | Major1 |  | Major2 |  | Minor1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 0 | 0 | 583 | 0 | 1047 | 583 |
| Stage 1 | - |  | - | - | 583 | - |
| Stage 2 | - | - | - | - | 464 | - |
| Critical Hdwy | - | - | 4.12 | - | 6.42 | 6.22 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.42 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.42 | - |
| Follow-up Hdwy | - | - | 2.218 | - | 3.518 | 3.318 |
| Pot Cap-1 Maneuver | - | - | 991 | - | 253 | 512 |
| Stage 1 | - | - | - | - | 558 | - |
| Stage 2 | - | - | - | - | 633 | - |
| Platoon blocked, \% | - | - |  | - |  |  |
| Mov Cap-1 Maneuver | - | - | 991 | - | 253 | 512 |
| Mov Cap-2 Maneuver | - | - | - | - | 453 | - |
| Stage 1 | - | - | - | - | 558 | - |
| Stage 2 | - | - | - | - | 632 | - |
|  |  |  |  |  |  |  |
| Approach | SE |  | NW |  | NE |  |
| HCM Control Delay, s | 0 |  | 0 |  | 13 |  |
| HCM LOS |  |  |  |  | B |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NELn1 | NWL | NWT | SET | SER |
| Capacity (veh/h) |  | 453 | 991 | - | - | - |
| HCM Lane V/C Ratio |  | 0.005 | 0.001 | - | - | - |
| HCM Control Delay (s) |  | 13 | 8.6 | - | - | - |
| HCM Lane LOS |  | B | A | - | - | - |
| HCM 95th \%tile Q(veh) |  | 0 | 0 | - | - | - |

## APPENDIX C: 2040 CAPACITY ANALYSIS REPORTS

| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.5 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | $\uparrow$ |  | 1 | 4 | rin |  |
| Traffic Vol, veh/h | 356 | 14 | 2 | 493 | 33 | 3 |
| Future Vol, veh/h | 356 | 14 | 2 | 493 | 33 | 3 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | 50 | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 2 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 396 | 16 | 2 | 548 | 37 | 3 |


| Major/Minor M | Major1 |  | Major2 |  | Minor1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 0 | 0 | 412 | 0 | 956 | 404 |
| Stage 1 | - |  | - | - | 404 | - |
| Stage 2 | - | - | - | - | 552 | - |
| Critical Hdwy | - | - | 4.12 | - | 6.42 | 6.22 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.42 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.42 | - |
| Follow-up Hdwy | - | - | 2.218 | - | 3.518 | 3.318 |
| Pot Cap-1 Maneuver | - | - | 1147 | - | 286 | 647 |
| Stage 1 | - | - | - | - | 674 | - |
| Stage 2 | - | - | - | - | 577 | - |
| Platoon blocked, \% | - | - |  | - |  |  |
| Mov Cap-1 Maneuver | - | - | 1147 | - | 285 | 647 |
| Mov Cap-2 Maneuver | - | - | - | - | 480 | - |
| Stage 1 | - | - | - | - | 674 | - |
| Stage 2 | - | - | - | - | 576 | - |
|  |  |  |  |  |  |  |
| Approach | SE |  | NW |  | NE |  |
| HCM Control Delay, s | 0 |  | 0 |  | 13 |  |
| HCM LOS |  |  |  |  | B |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NELn1 | NWL | NWT | SET | SER |
| Capacity (veh/h) |  | 491 | 1147 | - | - | - |
| HCM Lane V/C Ratio |  | 0.081 | 0.002 | - | - | - |
| HCM Control Delay (s) |  | 13 | 8.1 | - | - | - |
| HCM Lane LOS |  | B | A | - | - | - |
| HCM 95th \%tile Q(veh) |  | 0.3 | 0 | - | - | - |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.3 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | 1 |  | 1 | 4 | Mr |  |
| Traffic Vol, veh/h | 741 | 33 | 5 | 588 | 21 | 2 |
| Future Vol, veh/h | 741 | 33 | 5 | 588 | 21 | 2 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | 50 | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 2 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 823 | 37 | 6 | 653 | 23 | 2 |


| Major/Minor M | Major1 |  | Major2 |  | Minor1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 0 | 0 | 860 | 0 | 1507 | 842 |
| Stage 1 | - |  | - | - | 842 | - |
| Stage 2 | - | - | - | - | 665 | - |
| Critical Hdwy | - | - | 4.12 | - | 6.42 | 6.22 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.42 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.42 | - |
| Follow-up Hdwy | - | - | 2.218 | - | 3.518 | 3.318 |
| Pot Cap-1 Maneuver | - | - | 781 | - | 133 | 364 |
| Stage 1 | - | - | - | - | 423 | - |
| Stage 2 | - | - | - | - | 511 | - |
| Platoon blocked, \% | - | - |  | - |  |  |
| Mov Cap-1 Maneuver | - | - | 781 | - | 132 | 364 |
| Mov Cap-2 Maneuver | - | - | - | - | 332 | - |
| Stage 1 | - | - | - | - | 423 | - |
| Stage 2 | - | - | - | - | 507 | - |
|  |  |  |  |  |  |  |
| Approach | SE |  | NW |  | NE |  |
| HCM Control Delay, s | 0 |  | 0.1 |  | 16.6 |  |
| HCM LOS |  |  |  |  | C |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NELn1 | NWL | NWT | SET | SER |
| Capacity (veh/h) |  | 335 | 781 | - | - | - |
| HCM Lane V/C Ratio |  | 0.076 | 0.007 | - | - | - |
| HCM Control Delay (s) |  | 16.6 | 9.6 | - | - | - |
| HCM Lane LOS |  | C | A | - | - | - |
| HCM 95th \%tile Q(veh) |  | 0.2 | 0 | - | - | - |

1: Riverview Parkway \& SH 55

| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.5 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | 4 | $\mathbf{7}$ | 1 | 个 | Mr |  |
| Traffic Vol, veh/h | 356 | 14 | 2 | 493 | 33 | 3 |
| Future Vol, veh/h | 356 | 14 | 2 | 493 | 33 | 3 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | 100 | 50 | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 2 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 396 | 16 | 2 | 548 | 37 | 3 |


| Major/Minor M | Major1 |  | Major2 |  | Minor1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 0 | 0 | 412 | 0 | 948 | 396 |
| Stage 1 | - | - | - | - | 396 | - |
| Stage 2 | - | - | - | - | 552 | - |
| Critical Hdwy | - | - | 4.12 | - | 6.42 | 6.22 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.42 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.42 | - |
| Follow-up Hdwy | - | - | 2.218 | - | 3.518 | 3.318 |
| Pot Cap-1 Maneuver | - | - | 1147 | - | 289 | 653 |
| Stage 1 | - | - | - | - | 680 | - |
| Stage 2 | - | - | - | - | 577 | - |
| Platoon blocked, \% | - | - |  | - |  |  |
| Mov Cap-1 Maneuver | - | - | 1147 | - | 288 | 653 |
| Mov Cap-2 Maneuver | - | - | - | - | 482 | - |
| Stage 1 | - | - | - | - | 680 | - |
| Stage 2 | - | - | - | - | 576 | - |
|  |  |  |  |  |  |  |
| Approach | SE |  | NW |  | NE |  |
| HCM Control Delay, s | 0 |  | 0 |  | 12.9 |  |
| HCM LOS |  |  |  |  | B |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NELn1 | NWL | NWT | SET | SER |
| Capacity (veh/h) |  | 493 | 1147 | - | - | , |
| HCM Lane V/C Ratio |  | 0.081 | 0.002 | - | - | - |
| HCM Control Delay (s) |  | 12.9 | 8.1 | - | - | - |
| HCM Lane LOS |  | B | A | - | - | - |
| HCM 95th \%tile Q(veh) |  | 0.3 | 0 | - | - | - |


| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.3 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | 4 | $\mathbf{7}$ | 1 | 个 | Mr |  |
| Traffic Vol, veh/h | 741 | 33 | 5 | 588 | 21 | 2 |
| Future Vol, veh/h | 741 | 33 | 5 | 588 | 21 | 2 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | 100 | 50 | - | 0 | - |
| Veh in Median Storage, \# | 0 | - | - | 0 | 2 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 823 | 37 | 6 | 653 | 23 | 2 |


| Major/Minor M | Major1 |  | Major2 |  | Minor1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 0 | 0 | 860 | 0 | 1488 | 823 |
| Stage 1 | - |  | - | - | 823 | - |
| Stage 2 | - | - | - | - | 665 | - |
| Critical Hdwy | - | - | 4.12 | - | 6.42 | 6.22 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.42 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.42 | - |
| Follow-up Hdwy | - | - | 2.218 | - | 3.518 | 3.318 |
| Pot Cap-1 Maneuver | - | - | 781 | - | 137 | 373 |
| Stage 1 | - | - | - | - | 431 | - |
| Stage 2 | - | - | - | - | 511 | - |
| Platoon blocked, \% | - | - |  | - |  |  |
| Mov Cap-1 Maneuver | - | - | 781 | - | 136 | 373 |
| Mov Cap-2 Maneuver | - | - | - | - | 336 | - |
| Stage 1 | - | - | - | - | 431 | - |
| Stage 2 | - | - | - | - | 507 | - |
|  |  |  |  |  |  |  |
| Approach | SE |  | NW |  | NE |  |
| HCM Control Delay, s | 0 |  | 0.1 |  | 16.5 |  |
| HCM LOS |  |  |  |  | C |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NELn1 | NWL | NWT | SET | SER |
| Capacity (veh/h) |  | 339 | 781 | - | - | - |
| HCM Lane V/C Ratio |  | 0.075 | 0.007 | - | - | - |
| HCM Control Delay (s) |  | 16.5 | 9.6 | - | - | - |
| HCM Lane LOS |  | C | A | - | - | - |
| HCM 95th \%tile Q(veh) |  | 0.2 | 0 | - | - | - |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 4.9 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{1}$ | 4 | 「 | ${ }^{7}$ | 4 | 「 |  | * |  |  | $\$$ |  |
| Traffic Vol, veh/h | 71 | 365 | 14 | 2 | 501 | 9 | 33 | 0 | 3 | 16 | 0 | 148 |
| Future Vol, veh/h | 71 | 365 | 14 | 2 | 501 | 9 | 33 | 0 | 3 | 16 | 0 | 148 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | 0 | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 79 | 406 | 16 | 2 | 557 | 10 | 37 | 0 | 3 | 18 | 0 | 164 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.9 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{1}$ | $\uparrow$ |  | ${ }^{7}$ | 4 | 「 |  | $\uparrow$ |  |  | * |  |
| Traffic Vol, veh/h | 80 | 441 | 3 | 3 | 674 | 8 | 3 | 3 | 3 | 9 | 3 | 76 |
| Future Vol, veh/h | 80 | 441 | 3 | 3 | 674 | 8 | 3 | 3 | 3 | 9 | 3 | 76 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | - | 50 | - | 150 | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 2 | - | - | 2 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 89 | 490 | 3 | 3 | 749 | 9 | 3 | 3 | 3 | 10 | 3 | 84 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 8.4 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{*}$ | 4 | 「 | ${ }^{7}$ | 4 | 「 |  | * |  |  | $\$$ |  |
| Traffic Vol, veh/h | 151 | 737 | 33 | 5 | 590 | 22 | 21 | 0 | 2 | 22 | 0 | 97 |
| Future Vol, veh/h | 151 | 737 | 33 | 5 | 590 | 22 | 21 | 0 | 2 | 22 | 0 | 97 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | 150 | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 168 | 819 | 37 | 6 | 656 | 24 | 23 | 0 | 2 | 24 | 0 | 108 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{1}$ | $\uparrow$ |  | ${ }^{7}$ | 4 | 「 |  | $\uparrow$ |  |  | $\leftrightarrow$ |  |
| Traffic Vol, veh/h | 89 | 899 | 3 | 3 | 685 | 23 | 3 | 3 | 3 | 22 | 3 | 90 |
| Future Vol, veh/h | 89 | 899 | 3 | 3 | 685 | 23 | 3 | 3 | 3 | 22 | 3 | 90 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | - | 50 | - | 150 | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 2 | - | - | 2 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 99 | 999 | 3 | 3 | 761 | 26 | 3 | 3 | 3 | 24 | 3 | 100 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 11.5 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{7}$ | 4 | 「 | ${ }^{7}$ | 4 | 7 |  | * |  |  | \$ |  |
| Traffic Vol, veh/h | 151 | 356 | 14 | 2 | 493 | 17 | 33 | 0 | 3 | 25 | 0 | 224 |
| Future Vol, veh/h | 151 | 356 | 14 | 2 | 493 | 17 | 33 | 0 | 3 | 25 | 0 | 224 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | 0 | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 168 | 396 | 16 | 2 | 548 | 19 | 37 | 0 | 3 | 28 | 0 | 249 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 68 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{1}$ | 4 | 「 | ${ }^{7}$ | 4 | 「 |  | * |  |  | \$ |  |
| Traffic Vol, veh/h | 240 | 715 | 33 | 5 | 567 | 45 | 21 | 0 | 2 | 44 | 0 | 187 |
| Future Vol, veh/h | 240 | 715 | 33 | 5 | 567 | 45 | 21 | 0 | 2 | 44 | 0 | 187 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | 150 | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 267 | 794 | 37 | 6 | 630 | 50 | 23 | 0 | 2 | 49 | 0 | 208 |


| Major/Minor | Major1 |  |  | Major2 |  |  | Minor1 |  |  | Minor2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 680 | 0 | 0 | 831 | 0 | 0 | 2099 | 2020 | 794 | 1990 | 2007 | 630 |  |
| Stage 1 | - | - | - | - | - | - | 1328 | 1328 | - | 642 | 642 | - |  |
| Stage 2 | - | - | - | - | - | - | 771 | 692 | - | 1348 | 1365 | - |  |
| Critical Hdwy | 4.12 | - | - | 4.12 | - | - | 7.12 | 6.52 | 6.22 | 7.12 | 6.52 | 6.22 |  |
| Critical Hdwy Stg 1 | - | - | - | - | - | - | 6.12 | 5.52 | - | 6.12 | 5.52 | - |  |
| Critical Hdwy Stg 2 | - | - | - | - | - | - | 6.12 | 5.52 | - | 6.12 | 5.52 | - |  |
| Follow-up Hdwy | 2.218 | - | - | 2.218 | - |  | 3.518 | 4.018 | 3.318 | 3.518 | 4.018 | 3.318 |  |
| Pot Cap-1 Maneuver | 912 | - | - | 801 | - | - | 38 | 58 | 388 | $\sim 45$ | 59 | 482 |  |
| Stage 1 | - | - | - | - | - | - | 191 | 224 | - | 463 | 469 | - |  |
| Stage 2 | - | - | - | - | - | - | 393 | 445 | - | 186 | 215 | - |  |
| Platoon blocked, \% |  | - | - |  | - | - |  |  |  |  |  |  |  |
| Mov Cap-1 Maneuver | 912 | - | - | 801 | - | - | $\sim 17$ | 41 | 388 | $\sim 34$ | 41 | 482 |  |
| Mov Cap-2 Maneuver | - | - | - | - | - | - | ~ 17 | 41 | - | $\sim 34$ | 41 | - |  |
| Stage 1 | - | - | - | - | - | - | 135 | 158 | - | 327 | 466 | - |  |
| Stage 2 | - | - | - | - | - | - | 222 | 442 | - | 131 | 152 | - |  |


| Approach | SE | NW | NE | SW |
| :--- | ---: | ---: | ---: | ---: |
| HCM Control Delay, s | 2.6 | 0.1 | $\$ 619.5$ | $\$ 474.3$ |
| HCM LOS |  | $F$ | F |  |


| Minor Lane/Major Mvmt | NELn1 | NWL | NWT | NWR | SEL | SET | SERSWLn1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Capacity (veh/h) | 19 | 801 | - | - | 912 | - | -137 |
| HCM Lane V/C Ratio | 1.345 | 0.007 | - | -0.292 | - | -1.873 |  |
| HCM Control Delay (s) | $\$ 619.5$ | 9.5 | - | -10.6 | - | $-\$ 474.3$ |  |
| HCM Lane LOS | F | A | - | - | B | - | - |
| HCM 95th \%tile Q(veh) | 3.5 | 0 | - | - | 1.2 | - | -19.8 |

## Notes

~: Volume exceeds capacity $\$$ : Delay exceeds 300s $\quad+$ : Computation Not Defined *: All major volume in platoon

| Intersection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection Delay, s/veh | 7.5 |  |  |  |
| Intersection LOS | A |  |  |  |
| Approach | SE | NW | NE | SW |
| Entry Lanes | 1 | 1 | 1 | 1 |
| Conflicting Circle Lanes | 1 | 1 | 1 | 1 |
| Adj Approach Flow, veh/h | 501 | 569 | 40 | 182 |
| Demand Flow Rate, veh/h | 523 | 597 | 41 | 185 |
| Vehicles Circulating, veh/h | 20 | 119 | 525 | 625 |
| Vehicles Exiting, veh/h | 790 | 447 | 18 | 91 |
| Ped Vol Crossing Leg, \#/h | 0 | 0 | 0 | 0 |
| Ped Cap Adj | 1.000 | 1.000 | 1.000 | 1.000 |
| Approach Delay, s/veh | 6.5 | 8.4 | 5.1 | 8.0 |
| Approach LOS | A | A | A | A |


| Lane | Left | Left | Left | Left |
| :--- | :---: | ---: | ---: | ---: |
| Designated Moves | LTR | LTR | LTR | LTR |
| Assumed Moves | LTR | LTR |  |  |
| RT Channelized |  |  | 1.000 | 1.000 |
| Lane Util | 1.000 | 1.000 | 2.609 | 4.976 |
| Follow-Up Headway, s | 2.609 | 2.609 | 4.976 | 185 |
| Critical Headway, s | 4.976 | 4.976 | 41 | 729 |
| Entry Flow, veh/h | 523 | 597 | 808 | 0.984 |
| Cap Entry Lane, veh/h | 1352 | 1222 | 0.976 | 182 |
| Entry HV Adj Factor | 0.957 | 0.953 | 40 | 718 |
| Flow Entry, veh/h | 501 | 569 | 788 | 0.254 |
| Cap Entry, veh/h | 1294 | 1165 | 0.051 | 8.0 |
| V/C Ratio | 0.387 | 0.488 | 5.1 | A |
| Control Delay, s/veh | 6.5 | 8.4 | A | 1 |
| LOS | A | 3 | 0 |  |


| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{1}$ | $\uparrow$ |  | ${ }^{7}$ | $\uparrow$ |  | ${ }^{7}$ | F |  | ${ }^{*}$ | $\uparrow$ |  |
| Traffic Volume (vph) | 71 | 365 | 14 | 2 | 201 | 9 | 33 | 0 | 3 | 16 | 0 | 148 |
| Future Volume (vph) | 71 | 365 | 14 | 2 | 201 | 9 | 33 | 0 | 3 | 16 | 0 | 148 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Lane Util. Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Frt | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.85 |  | 1.00 | 0.85 |  |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  |
| Satd. Flow (prot) | 1770 | 1801 |  | 1770 | 1800 |  | 1770 | 1583 |  | 1770 | 1583 |  |
| Flt Permitted | 0.61 | 1.00 |  | 0.52 | 1.00 |  | 0.74 | 1.00 |  | 0.76 | 1.00 |  |
| Satd. Flow (perm) | 1143 | 1801 |  | 961 | 1800 |  | 1380 | 1583 |  | 1408 | 1583 |  |
| Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Adj. Flow (vph) | 79 | 406 | 16 | 2 | 223 | 10 | 37 | 0 | 3 | 18 | 0 | 164 |
| RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 137 | 0 |
| Lane Group Flow (vph) | 79 | 420 | 0 | 2 | 231 | 0 | 37 | 0 | 0 | 18 | 27 | 0 |
| Heavy Vehicles (\%) | 2\% | 5\% | 2\% | 2\% | 5\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% |
| Turn Type | Perm | NA |  |
| Protected Phases |  | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |
| Permitted Phases | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |  |
| Actuated Green, G (s) | 17.1 | 17.1 |  | 17.1 | 17.1 |  | 5.4 | 5.4 |  | 5.4 | 5.4 |  |
| Effective Green, g (s) | 17.1 | 17.1 |  | 17.1 | 17.1 |  | 5.4 | 5.4 |  | 5.4 | 5.4 |  |
| Actuated g/C Ratio | 0.53 | 0.53 |  | 0.53 | 0.53 |  | 0.17 | 0.17 |  | 0.17 | 0.17 |  |
| Clearance Time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Vehicle Extension (s) | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  |
| Lane Grp Cap (vph) | 601 | 947 |  | 505 | 947 |  | 229 | 263 |  | 233 | 263 |  |
| v/s Ratio Prot |  | c0.23 |  |  | 0.13 |  |  | 0.00 |  |  | 0.02 |  |
| v/s Ratio Perm | 0.07 |  |  | 0.00 |  |  | c0.03 |  |  | 0.01 |  |  |
| v/c Ratio | 0.13 | 0.44 |  | 0.00 | 0.24 |  | 0.16 | 0.00 |  | 0.08 | 0.10 |  |
| Uniform Delay, d1 | 3.9 | 4.8 |  | 3.7 | 4.2 |  | 11.6 | 11.3 |  | 11.4 | 11.5 |  |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Incremental Delay, d2 | 0.1 | 0.3 |  | 0.0 | 0.1 |  | 0.3 | 0.0 |  | 0.1 | 0.2 |  |
| Delay (s) | 4.0 | 5.1 |  | 3.7 | 4.3 |  | 11.9 | 11.3 |  | 11.6 | 11.7 |  |
| Level of Service | A | A |  | A | A |  | B | B |  | B | B |  |
| Approach Delay (s) |  | 4.9 |  |  | 4.3 |  |  | 11.9 |  |  | 11.7 |  |
| Approach LOS |  | A |  |  | A |  |  | B |  |  | B |  |


| Intersection Summary |  |  | A |
| :--- | ---: | :--- | ---: |
| HCM 2000 Control Delay | 6.3 | HCM 2000 Level of Service | 10.0 |
| HCM 2000 Volume to Capacity ratio | 0.38 |  | A |
| Actuated Cycle Length (s) | 32.5 | Sum of lost time (s) |  |
| Intersection Capacity Utilization | $54.2 \%$ | ICU Level of Service |  |
| Analysis Period (min) | 15 |  |  |
| C Critical Lane Group |  |  |  |


| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{7}$ | $\hat{\sigma}$ |  | \% | $\dagger$ |  | \% | $\uparrow$ |  | \% | $\hat{\beta}$ |  |
| Traffic Volume (veh/h) | 71 | 365 | 14 | 2 | 201 | 9 | 33 | 0 | 3 | 16 | 0 | 148 |
| Future Volume (veh/h) | 71 | 365 | 14 | 2 | 201 | 9 | 33 | 0 | 3 | 16 | 0 | 148 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1826 | 1826 | 1870 | 1826 | 1826 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 79 | 406 | 16 | 2 | 223 | 10 | 37 | 0 | 3 | 18 | 0 | 164 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, \% | 2 | 5 | 5 | 2 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 670 | 707 | 28 | 523 | 703 | 32 | 396 | 0 | 269 | 544 | 0 | 269 |
| Arrive On Green | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 | 0.17 | 0.00 | 0.17 | 0.17 | 0.00 | 0.17 |
| Sat Flow, veh/h | 1147 | 1745 | 69 | 965 | 1734 | 78 | 1222 | 0 | 1585 | 1414 | 0 | 1585 |
| Grp Volume(v), veh/h | 79 | 0 | 422 | 2 | 0 | 233 | 37 | 0 | 3 | 18 | 0 | 164 |
| Grp Sat Flow(s),veh/h/ln | 1147 | 0 | 1814 | 965 | 0 | 1812 | 1222 | 0 | 1585 | 1414 | 0 | 1585 |
| Q Serve(g_s), s | 1.2 | 0.0 | 4.2 | 0.0 | 0.0 | 2.1 | 0.7 | 0.0 | 0.0 | 0.3 | 0.0 | 2.3 |
| Cycle Q Clear(g_c), s | 3.3 | 0.0 | 4.2 | 4.3 | 0.0 | 2.1 | 2.9 | 0.0 | 0.0 | 0.3 | 0.0 | 2.3 |
| Prop In Lane | 1.00 |  | 0.04 | 1.00 |  | 0.04 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 670 | 0 | 735 | 523 | 0 | 734 | 396 | 0 | 269 | 544 | 0 | 269 |
| V/C Ratio(X) | 0.12 | 0.00 | 0.57 | 0.00 | 0.00 | 0.32 | 0.09 | 0.00 | 0.01 | 0.03 | 0.00 | 0.61 |
| Avail Cap(c_a), veh/h | 2449 | 0 | 3547 | 2019 | 0 | 3544 | 1436 | 0 | 1617 | 1746 | 0 | 1617 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 5.9 | 0.0 | 5.4 | 7.1 | 0.0 | 4.8 | 10.4 | 0.0 | 8.1 | 8.2 | 0.0 | 9.0 |
| Incr Delay (d2), s/veh | 0.1 | 0.0 | 0.7 | 0.0 | 0.0 | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 2.2 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 0.1 | 0.0 | 0.7 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.6 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 6.0 | 0.0 | 6.1 | 7.1 | 0.0 | 5.0 | 10.5 | 0.0 | 8.1 | 8.3 | 0.0 | 11.3 |
| LnGrp LOS | A | A | A | A | A | A | B | A | A | A | A | B |
| Approach Vol, veh/h |  | 501 |  |  | 235 |  |  | 40 |  |  | 182 |  |
| Approach Delay, s/veh |  | 6.1 |  |  | 5.0 |  |  | 10.3 |  |  | 11.0 |  |
| Approach LOS |  | A |  |  | A |  |  | B |  |  | B |  |
| Timer - Assigned Phs |  | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration (G+Y+Rc), s |  | 14.5 |  | 9.0 |  | 14.5 |  | 9.0 |  |  |  |  |
| Change Period (Y+Rc), s |  | 5.0 |  | 5.0 |  | 5.0 |  | 5.0 |  |  |  |  |
| Max Green Setting (Gmax), s |  | 46.0 |  | 24.0 |  | 46.0 |  | 24.0 |  |  |  |  |
| Max Q Clear Time (g_c+l1), s |  | 6.3 |  | 4.9 |  | 6.2 |  | 4.3 |  |  |  |  |
| Green Ext Time (p_c), s |  | 1.2 |  | 0.1 |  | 3.3 |  | 1.0 |  |  |  |  |

Intersection Summary
HCM 6th Ctrl Delay 6.9

HCM 6th LOS

| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 3.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{*}$ | 4 | F | ${ }^{7}$ | $\uparrow$ |  |  |  | 「 |  |  | F |
| Traffic Vol, veh/h | 71 | 381 | 14 | 2 | 534 | 7 | 0 | 0 | 33 | 0 | 0 | 173 |
| Future Vol, veh/h | 71 | 381 | 14 | 2 | 534 | 7 | 0 | 0 | 33 | 0 | 0 | 173 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | - | - | - | 0 | - | - | 0 |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvut Flow | 79 | 423 | 16 | 2 | 593 | 8 | 0 | 0 | 37 | 0 | 0 | 192 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 1.8 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |  |
| Lane Configurations | ${ }^{1}$ | $\hat{\beta}$ |  | \% | 4 | 「 |  |  | F' |  |  | 1 |  |
| Traffic Vol, veh/h | 80 | 441 | 9 | 28 | 674 | 8 | 0 | 0 | 9 | 0 | 0 | 76 |  |
| Future Vol, veh/h | 80 | 441 | 9 | 28 | 674 | 8 | 0 | 0 | 9 | 0 | 0 | 76 |  |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized | - | - | None |  |
| Storage Length | 50 | - | - | 0 | - | 150 | - | - | 0 | - | - | 0 |  |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |  |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |  |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |
| Mvmt Flow | 89 | 490 | 10 | 31 | 749 | 9 | 0 | 0 | 10 | 0 | 0 | 84 |  |



| Intersection |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Intersection Delay, s/veh | 14.4 |  |  |  |
| Intersection LOS | B |  |  |  |
| Approach | SE | NW | NE | SW |
| Entry Lanes | 1 | 1 | 1 | 1 |
| Conflicting Circle Lanes | 1 | 1 | 1 | 1 |
| Adj Approach Flow, veh/h | 1024 | 686 | 25 | 132 |
| Demand Flow Rate, veh/h | 1069 | 719 | 25 | 134 |
| Vehicles Circulating, veh/h | 30 | 194 | 1055 | 718 |
| Vehicles Exiting, veh/h | 822 | 886 | 44 | 195 |
| Ped Vol Crossing Leg, \#/h | 0 | 0 | 0 | 0 |
| Ped Cap Adj | 1.000 | 1.000 | 1.000 | 1.000 |
| Approach Delay, s/veh | 16.8 | 12.1 | 8.3 | 7.9 |
| Approach LOS | C | B | A | A |


| Lane | Left | Left | Left | Left |
| :--- | :---: | :---: | :---: | :---: |
| Designated Moves | LTR | LTR | LTR | LTR |
| Assumed Moves | LTR | LTR | LTR |  |
| RT Channelized |  |  |  |  |
| Lane Util | 1.000 | 1.000 | 1.000 | 1.000 |
| Follow-Up Headway, s | 2.609 | 2.609 | 2.609 | 4.909 |
| Critical Headway, s | 4.976 | 4.976 | 4.976 | 134 |
| Entry Flow, veh/h | 1069 | 719 | 25 | 663 |
| Cap Entry Lane, veh/h | 1338 | 1132 | 470 | 0.985 |
| Entry HV Adj Factor | 0.958 | 0.954 | 1.000 | 654 |
| Flow Entry, veh/h | 1024 | 686 | 25 | 0.202 |
| Cap Entry, veh/h | 1282 | 1080 | 770 | 7.9 |
| V/C Ratio | 0.799 | 0.635 | 0.053 | A |
| Control Delay, s/veh | 16.8 | 12.1 | 8.3 | 1 |
| LOS | C | B | A |  |
| 95th \%tile Queue, veh | 9 | 5 | 0 |  |


| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{*}$ | $\hat{\sigma}$ |  | ${ }^{*}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  |
| Traffic Volume (vph) | 151 | 737 | 33 | 5 | 590 | 22 | 21 | 0 | 2 | 22 | 0 | 97 |
| Future Volume (vph) | 151 | 737 | 33 | 5 | 590 | 22 | 21 | 0 | 2 | 22 | 0 | 97 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Lane Util. Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Frt | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.85 |  | 1.00 | 0.85 |  |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  |
| Satd. Flow (prot) | 1770 | 1800 |  | 1770 | 1802 |  | 1770 | 1583 |  | 1770 | 1583 |  |
| Flt Permitted | 0.21 | 1.00 |  | 0.34 | 1.00 |  | 0.74 | 1.00 |  | 0.76 | 1.00 |  |
| Satd. Flow (perm) | 387 | 1800 |  | 642 | 1802 |  | 1380 | 1583 |  | 1409 | 1583 |  |
| Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Adj. Flow (vph) | 168 | 819 | 37 | 6 | 656 | 24 | 23 | 0 | 2 | 24 | 0 | 108 |
| RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 98 | 0 |
| Lane Group Flow (vph) | 168 | 854 | 0 | 6 | 679 | 0 | 23 | 0 | 0 | 24 | 10 | 0 |
| Heavy Vehicles (\%) | 2\% | 5\% | 2\% | 2\% | 5\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% |
| Turn Type | pm+pt | NA |  | Perm | NA |  | Perm | NA |  | Perm | NA |  |
| Protected Phases | 1 | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |
| Permitted Phases | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |  |
| Actuated Green, G (s) | 40.4 | 40.4 |  | 28.7 | 28.7 |  | 5.4 | 5.4 |  | 5.4 | 5.4 |  |
| Effective Green, g (s) | 40.4 | 40.4 |  | 28.7 | 28.7 |  | 5.4 | 5.4 |  | 5.4 | 5.4 |  |
| Actuated g/C Ratio | 0.72 | 0.72 |  | 0.51 | 0.51 |  | 0.10 | 0.10 |  | 0.10 | 0.10 |  |
| Clearance Time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Vehicle Extension (s) | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  |
| Lane Grp Cap (vph) | 446 | 1303 |  | 330 | 926 |  | 133 | 153 |  | 136 | 153 |  |
| v/s Ratio Prot | 0.05 | c0.47 |  |  | c0.38 |  |  | 0.00 |  |  | 0.01 |  |
| v/s Ratio Perm | 0.23 |  |  | 0.01 |  |  | 0.02 |  |  | c0.02 |  |  |
| v/c Ratio | 0.38 | 0.66 |  | 0.02 | 0.73 |  | 0.17 | 0.00 |  | 0.18 | 0.07 |  |
| Uniform Delay, d1 | 5.5 | 4.0 |  | 6.6 | 10.6 |  | 23.1 | 22.8 |  | 23.2 | 22.9 |  |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Incremental Delay, d2 | 0.5 | 1.2 |  | 0.0 | 3.0 |  | 0.6 | 0.0 |  | 0.6 | 0.2 |  |
| Delay (s) | 6.0 | 5.2 |  | 6.7 | 13.6 |  | 23.8 | 22.8 |  | 23.8 | 23.1 |  |
| Level of Service | A | A |  | A | B |  | C | C |  | C | C |  |
| Approach Delay (s) |  | 5.4 |  |  | 13.5 |  |  | 23.7 |  |  | 23.2 |  |
| Approach LOS |  | A |  |  | B |  |  | C |  |  | C |  |


| Intersection Summary |  |  |  |
| :--- | ---: | :--- | ---: |
| HCM 2000 Control Delay | 9.9 | HCM 2000 Level of Service | A |
| HCM 2000 Volume to Capacity ratio | 0.69 |  | 15.0 |
| Actuated Cycle Length (s) | 55.8 | Sum of lost time (s) | C |
| Intersection Capacity Utilization | $65.3 \%$ | ICU Level of Service |  |
| Analysis Period (min) | 15 |  |  |
| C Critical Lane Group |  |  |  |


| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{*}$ | F |  | ${ }^{*}$ | $\hat{\sigma}$ |  | ${ }^{*}$ | $\hat{F}$ |  |
| Traffic Volume (veh/h) | 151 | 737 | 33 | 5 | 590 | 22 | 21 | 0 | 2 | 22 | 0 | 97 |
| Future Volume (veh/h) | 151 | 737 | 33 | 5 | 590 | 22 | 21 | 0 | 2 | 22 | 0 | 97 |
| Initial Q $(Q b)$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1826 | 1826 | 1870 | 1826 | 1826 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 168 | 819 | 37 | 6 | 656 | 24 | 23 | 0 | 2 | 24 | 0 | 108 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, \% | 2 | 5 | 5 | 2 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 437 | 1159 | 52 | 399 | 805 | 29 | 217 | 0 | 174 | 313 | 0 | 174 |
| Arrive On Green | 0.10 | 0.67 | 0.67 | 0.46 | 0.46 | 0.46 | 0.11 | 0.00 | 0.11 | 0.11 | 0.00 | 0.11 |
| Sat Flow, veh/h | 1781 | 1733 | 78 | 645 | 1750 | 64 | 1286 | 0 | 1585 | 1415 | 0 | 1585 |
| Grp Volume(v), veh/h | 168 | 0 | 856 | 6 | 0 | 680 | 23 | 0 | 2 | 24 | 0 | 108 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1812 | 645 | 0 | 1814 | 1286 | 0 | 1585 | 1415 | 0 | 1585 |
| Q Serve(g_s), s | 1.9 | 0.0 | 13.4 | 0.3 | 0.0 | 14.6 | 0.8 | 0.0 | 0.1 | 0.7 | 0.0 | 2.9 |
| Cycle Q Clear(g_c), s | 1.9 | 0.0 | 13.4 | 4.3 | 0.0 | 14.6 | 3.7 | 0.0 | 0.1 | 0.7 | 0.0 | 2.9 |
| Prop In Lane | 1.00 |  | 0.04 | 1.00 |  | 0.04 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap(c), veh/h | 437 | 0 | 1211 | 399 | 0 | 834 | 217 | 0 | 174 | 313 | 0 | 174 |
| V/C Ratio(X) | 0.38 | 0.00 | 0.71 | 0.02 | 0.00 | 0.82 | 0.11 | 0.00 | 0.01 | 0.08 | 0.00 | 0.62 |
| Avail Cap(c_a), veh/h | 540 | 0 | 2092 | 676 | 0 | 1612 | 590 | 0 | 634 | 724 | 0 | 634 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 7.9 | 0.0 | 4.7 | 9.0 | 0.0 | 10.5 | 20.9 | 0.0 | 17.9 | 18.2 | 0.0 | 19.2 |
| Incr Delay (d2), s/veh | 0.6 | 0.0 | 0.8 | 0.0 | 0.0 | 2.0 | 0.2 | 0.0 | 0.0 | 0.1 | 0.0 | 3.6 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 0.4 | 0.0 | 2.3 | 0.0 | 0.0 | 3.4 | 0.2 | 0.0 | 0.0 | 0.2 | 0.0 | 1.1 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 8.4 | 0.0 | 5.5 | 9.0 | 0.0 | 12.5 | 21.1 | 0.0 | 17.9 | 18.3 | 0.0 | 22.8 |
| LnGrp LOS | A | A | A | A | A | B | C | A | B | B | A | C |
| Approach Vol, veh/h |  | 1024 |  |  | 686 |  |  | 25 |  |  | 132 |  |
| Approach Delay, s/veh |  | 5.9 |  |  | 12.5 |  |  | 20.9 |  |  | 22.0 |  |
| Approach LOS |  | A |  |  | B |  |  | C |  |  | C |  |


| Timer - Assigned Phs | 1 | 2 | 4 | 6 | 8 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Phs Duration (G+Y+Rc), s | 9.4 | 25.7 | 9.9 | 35.1 | 9.9 |
| Change Period (Y+Rc), s | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 |
| Max Green Setting (Gmax), s | 7.0 | 40.0 | 18.0 | 52.0 | 18.0 |
| Max Q Clear Time (g_c+11), s | 3.9 | 16.6 | 5.7 | 15.4 | 4.9 |
| Green Ext Time (p_c), s | 0.1 | 4.1 | 0.0 | 8.1 | 0.5 |

Intersection Summary
HCM 6th Ctrl Delay 9.7

HCM 6th LOS





| Intersection |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Intersection Delay, s/veh | 8.5 |  |  |  |
| Intersection LOS | A |  | NW | NE |
| Approach | SE | 1 | 1 | SW |
| Entry Lanes | 1 | 1 | 1 | 1 |
| Conflicting Circle Lanes | 1 | 569 | 1 |  |
| Adj Approach Flow, veh/h | 580 | 580 | 277 |  |
| Demand Flow Rate, veh/h | 591 | 209 | 28 |  |
| Vehicles Circulating, veh/h | 31 | 436 | 604 | 599 |
| Vehicles Exiting, veh/h | 851 | 0 | 18 | 190 |
| Ped Vol Crossing Leg, \#/h | 0 | 1.000 | 0 | 0 |
| Ped Cap Adj | 1.000 | 9.4 | 1.000 | 1.000 |
| Approach Delay, s/veh | 7.1 | A | 5.5 | 9.7 |
| Approach LOS | A |  | A | A |


| Lane | Left | Left | Left | Left |
| :--- | :---: | ---: | ---: | ---: |
| Designated Moves | LTR | LTR | LTR | LTR |
| Assumed Moves | LTR | LTR |  |  |
| RT Channelized |  |  |  |  |
| Lane Util | 1.000 | 1.000 | 1.000 | 2.600 |
| Follow-Up Headway, s | 2.609 | 2.609 | 2.609 | 4.976 |
| Critical Headway, s | 4.976 | 4.976 | 4.976 | 283 |
| Entry Flow, veh/h | 591 | 580 | 41 | 749 |
| Cap Entry Lane, veh/h | 1337 | 1115 | 745 | 0.979 |
| Entry HV Adj Factor | 0.982 | 0.981 | 277 |  |
| Flow Entry, veh/h | 580 | 569 | 733 |  |
| Cap Entry, veh/h | 1312 | 1094 | 40 | 0.378 |
| V/C Ratio | 0.442 | 0.520 | 727 | 9.7 |
| Control Delay, s/veh | 7.1 | 9.4 | 0.055 | A |
| LOS | A | 5.5 | 2 |  |


| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{*}$ | $\hat{\dagger}$ |  | ${ }^{*}$ | $\uparrow$ |  | ${ }^{1}$ | $\uparrow$ |  |
| Traffic Volume (vph) | 151 | 356 | 14 | 2 | 493 | 17 | 33 | 0 | 3 | 25 | 0 | 224 |
| Future Volume (vph) | 151 | 356 | 14 | 2 | 493 | 17 | 33 | 0 | 3 | 25 | 0 | 224 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Lane Util. Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Frt | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.85 |  | 1.00 | 0.85 |  |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  |
| Satd. Flow (prot) | 1770 | 1801 |  | 1770 | 1802 |  | 1770 | 1583 |  | 1770 | 1583 |  |
| Flt Permitted | 0.38 | 1.00 |  | 0.52 | 1.00 |  | 0.60 | 1.00 |  | 0.76 | 1.00 |  |
| Satd. Flow (perm) | 702 | 1801 |  | 961 | 1802 |  | 1126 | 1583 |  | 1408 | 1583 |  |
| Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Adj. Flow (vph) | 168 | 396 | 16 | 2 | 548 | 19 | 37 | 0 | 3 | 28 | 0 | 249 |
| RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 197 | 0 |
| Lane Group Flow (vph) | 168 | 410 | 0 | 2 | 565 | 0 | 37 | 1 | 0 | 28 | 52 | 0 |
| Heavy Vehicles (\%) | 2\% | 5\% | 2\% | 2\% | 5\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% |
| Turn Type | Perm | NA |  |
| Protected Phases |  | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |
| Permitted Phases | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |  |
| Actuated Green, G (s) | 18.2 | 18.2 |  | 18.2 | 18.2 |  | 7.4 | 7.4 |  | 7.4 | 7.4 |  |
| Effective Green, g (s) | 18.2 | 18.2 |  | 18.2 | 18.2 |  | 7.4 | 7.4 |  | 7.4 | 7.4 |  |
| Actuated g/C Ratio | 0.51 | 0.51 |  | 0.51 | 0.51 |  | 0.21 | 0.21 |  | 0.21 | 0.21 |  |
| Clearance Time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Vehicle Extension (s) | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  |
| Lane Grp Cap (vph) | 358 | 920 |  | 491 | 921 |  | 234 | 329 |  | 292 | 329 |  |
| v/s Ratio Prot |  | 0.23 |  |  | c0.31 |  |  | 0.00 |  |  | 0.03 |  |
| v/s Ratio Perm | 0.24 |  |  | 0.00 |  |  | c0.03 |  |  | 0.02 |  |  |
| v/c Ratio | 0.47 | 0.45 |  | 0.00 | 0.61 |  | 0.16 | 0.00 |  | 0.10 | 0.16 |  |
| Uniform Delay, d1 | 5.6 | 5.5 |  | 4.3 | 6.2 |  | 11.5 | 11.2 |  | 11.4 | 11.5 |  |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Incremental Delay, d2 | 1.0 | 0.3 |  | 0.0 | 1.2 |  | 0.3 | 0.0 |  | 0.1 | 0.2 |  |
| Delay (s) | 6.6 | 5.9 |  | 4.3 | 7.4 |  | 11.9 | 11.2 |  | 11.5 | 11.8 |  |
| Level of Service | A | A |  | A | A |  | B | B |  | B | B |  |
| Approach Delay (s) |  | 6.1 |  |  | 7.4 |  |  | 11.8 |  |  | 11.7 |  |
| Approach LOS |  | A |  |  | A |  |  | B |  |  | B |  |


| Approach LOS | A | A | B | B |
| :--- | ---: | :--- | ---: | :--- |
| Intersection Summary |  |  | A |  |
| HCM 2000 Control Delay | 7.8 | HCM 2000 Level of Service | 10.0 |  |
| HCM 2000 Volume to Capacity ratio | 0.48 |  | C |  |
| Actuated Cycle Length (s) | 35.6 | Sum of lost time (s) | ICU Level of Service |  |
| Intersection Capacity Utilization | $70.0 \%$ |  |  |  |

## Analysis Period (min)

15
C Critical Lane Group


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay，s／veh 5 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{7}$ | 4 | 「 | ${ }^{7}$ | 4 | 「 |  |  | F |  |  | 「 |
| Traffic Vol，veh／h | 151 | 381 | 14 | 2 | 526 | 14 | 0 | 0 | 36 | 0 | 0 | 249 |
| Future Vol，veh／h | 151 | 381 | 14 | 2 | 526 | 14 | 0 | 0 | 36 | 0 | 0 | 249 |
| Conflicting Peds，\＃／hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | － | － | None |
| Storage Length | 50 | － | 150 | 50 | － | 150 | － | － | 0 | － | － | 0 |
| Veh in Median Storage，\＃ | \＃ | 0 | － | － | 0 | － | － | 0 | － | － | 0 | － |
| Grade，\％ | － | 0 | － | － | 0 | － | － | 0 | － | － | 0 | － |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles，\％ | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 168 | 423 | 16 | 2 | 584 | 16 | 0 | 0 | 40 | 0 | 0 | 277 |



| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.3 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | $\boldsymbol{\beta}$ |  |  | 个 |  | $\mathbf{7}$ |
| Traffic Vol, veh/h | 521 | 6 | 28 | 750 | 0 | 9 |
| Future Vol, veh/h | 521 | 6 | 28 | 750 | 0 | 9 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | 50 | - | - | 0 |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 5 | 2 | 2 | 5 | 2 | 2 |
| Mvmt Flow | 579 | 7 | 31 | 833 | 0 | 10 |



| Intersection |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Intersection Delay, s/veh | 18.9 |  |  |  |
| Intersection LOS | C |  |  |  |
| Approach | SE | NW | SW |  |
| Entry Lanes | 1 | 1 | 1 | 1 |
| Conflicting Circle Lanes | 1 | 1 | 1 | 1 |
| Adj Approach Flow, veh/h | 1098 | 686 | 25 | 257 |
| Demand Flow Rate, veh/h | 1144 | 719 | 25 | 262 |
| Vehicles Circulating, veh/h | 56 | 295 | 690 |  |
| Vehicles Exiting, veh/h | 896 | 886 | 323 |  |
| Ped Vol Crossing Leg, \#/h | 0 | 0 | 44 | 0 |
| Ped Cap Adj | 1.000 | 1.000 | 0 | 1.000 |
| Approach Delay, s/veh | 23.3 | 15.5 | 1000 | B |
| Approach LOS | C | C | 9.3 | A |


| Lane | Left | Left | Left | Left |
| :--- | :---: | :---: | :---: | :---: |
| Designated Moves | LTR | LTR | LTR | LTR |
| Assumed Moves | LTR | LTR | LTR |  |
| RT Channelized |  |  |  |  |
| Lane Util | 1.000 | 1.000 | 1.000 | 1.000 |
| Follow-Up Headway, s | 2.609 | 2.609 | 2.609 | 4.909 |
| Critical Headway, s | 4.976 | 4.976 | 4.976 | 262 |
| Entry Flow, veh/h | 1144 | 719 | 25 | 683 |
| Cap Entry Lane, veh/h | 1303 | 1021 | 424 | 0.981 |
| Entry HV Adj Factor | 0.960 | 0.955 | 1.000 | 257 |
| Flow Entry, veh/h | 1098 | 686 | 670 |  |
| Cap Entry, veh/h | 1251 | 975 | 424 | 0.384 |
| V/C Ratio | 0.878 | 0.704 | 10.6 |  |
| Control Delay, s/veh | 23.3 | 15.5 | 0.059 | B |
| LOS | C | 6.3 | 2 |  |


| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | ${ }^{*}$ | $\uparrow$ |  | ${ }^{7}$ | $\uparrow$ |  | ${ }^{7}$ | F |  | ${ }^{7}$ | F |  |
| Traffic Volume (vph) | 240 | 715 | 33 | 5 | 567 | 45 | 21 | 0 | 2 | 44 | 0 | 187 |
| Future Volume (vph) | 240 | 715 | 33 | 5 | 567 | 45 | 21 | 0 | 2 | 44 | 0 | 187 |
| Ideal Flow (vphpl) | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 | 1900 |
| Total Lost time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Lane Util. Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Frt | 1.00 | 0.99 |  | 1.00 | 0.99 |  | 1.00 | 0.85 |  | 1.00 | 0.85 |  |
| Flt Protected | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  | 0.95 | 1.00 |  |
| Satd. Flow (prot) | 1770 | 1800 |  | 1770 | 1793 |  | 1770 | 1583 |  | 1770 | 1583 |  |
| Flt Permitted | 0.17 | 1.00 |  | 0.35 | 1.00 |  | 0.51 | 1.00 |  | 0.76 | 1.00 |  |
| Satd. Flow (perm) | 315 | 1800 |  | 658 | 1793 |  | 955 | 1583 |  | 1409 | 1583 |  |
| Peak-hour factor, PHF | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Adj. Flow (vph) | 267 | 794 | 37 | 6 | 630 | 50 | 23 | 0 | 2 | 49 | 0 | 208 |
| RTOR Reduction (vph) | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 2 | 0 | 0 | 181 | 0 |
| Lane Group Flow (vph) | 267 | 829 | 0 | 6 | 677 | 0 | 23 | 0 | 0 | 49 | 27 | 0 |
| Heavy Vehicles (\%) | 2\% | 5\% | 2\% | 2\% | 5\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% | 2\% |
| Turn Type | pm+pt | NA |  | Perm | NA |  | Perm | NA |  | Perm | NA |  |
| Protected Phases | 1 | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |
| Permitted Phases | 6 |  |  | 2 |  |  | 4 |  |  | 8 |  |  |
| Actuated Green, G (s) | 42.5 | 42.5 |  | 28.3 | 28.3 |  | 7.8 | 7.8 |  | 7.8 | 7.8 |  |
| Effective Green, g (s) | 42.5 | 42.5 |  | 28.3 | 28.3 |  | 7.8 | 7.8 |  | 7.8 | 7.8 |  |
| Actuated g/C Ratio | 0.70 | 0.70 |  | 0.47 | 0.47 |  | 0.13 | 0.13 |  | 0.13 | 0.13 |  |
| Clearance Time (s) | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  | 5.0 | 5.0 |  |
| Vehicle Extension (s) | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  | 3.0 | 3.0 |  |
| Lane Grp Cap (vph) | 444 | 1268 |  | 308 | 841 |  | 123 | 204 |  | 182 | 204 |  |
| v/s Ratio Prot | 0.09 | c0.46 |  |  | c0.38 |  |  | 0.00 |  |  | 0.02 |  |
| v/s Ratio Perm | 0.33 |  |  | 0.01 |  |  | 0.02 |  |  | c0.03 |  |  |
| v/c Ratio | 0.60 | 0.65 |  | 0.02 | 0.80 |  | 0.19 | 0.00 |  | 0.27 | 0.13 |  |
| Uniform Delay, d1 | 7.9 | 4.9 |  | 8.6 | 13.6 |  | 23.4 | 22.9 |  | 23.7 | 23.3 |  |
| Progression Factor | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  |
| Incremental Delay, d2 | 2.3 | 1.2 |  | 0.0 | 5.6 |  | 0.7 | 0.0 |  | 0.8 | 0.3 |  |
| Delay (s) | 10.2 | 6.1 |  | 8.6 | 19.3 |  | 24.2 | 22.9 |  | 24.5 | 23.5 |  |
| Level of Service | B | A |  | A | B |  | C | C |  | C | C |  |
| Approach Delay (s) |  | 7.1 |  |  | 19.2 |  |  | 24.1 |  |  | 23.7 |  |
| Approach LOS |  | A |  |  | B |  |  | C |  |  | C |  |


| Approach LOS | A | B | C |
| :--- | ---: | :--- | :---: |
| Intersection Summary |  |  | B |
| HCM 2000 Control Delay | 13.4 | HCM 2000 Level of Service | B |
| HCM 2000 Volume to Capacity ratio | 0.72 |  | 15.0 |
| Actuated Cycle Length (s) | 60.3 | Sum of lost time (s) | D |
| Intersection Capacity Utilization | $75.8 \%$ | ICU Level of Service |  |

## Analysis Period (min)

15
C Critical Lane Group

| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lane Configurations | \% | $\hat{1}$ |  | \% | $\uparrow$ |  | ${ }^{7}$ | $\hat{}$ |  | ${ }^{7}$ | $\hat{}$ |  |
| Traffic Volume (veh/h) | 240 | 715 | 33 | 5 | 567 | 45 | 21 | 0 | 2 | 44 | 0 | 187 |
| Future Volume (veh/h) | 240 | 715 | 33 | 5 | 567 | 45 | 21 | 0 | 2 | 44 | 0 | 187 |
| Initial $\mathrm{Q}(\mathrm{Qb})$, veh | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adj(A_pbT) | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Parking Bus, Adj | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach |  | No |  |  | No |  |  | No |  |  | No |  |
| Adj Sat Flow, veh/h/ln | 1870 | 1826 | 1826 | 1870 | 1826 | 1826 | 1870 | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h | 267 | 794 | 37 | 6 | 630 | 50 | 23 | 0 | 2 | 49 | 0 | 208 |
| Peak Hour Factor | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Percent Heavy Veh, \% | 2 | 5 | 5 | 2 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 |
| Cap, veh/h | 407 | 1112 | 52 | 354 | 734 | 58 | 192 | 0 | 281 | 379 | 0 | 281 |
| Arrive On Green | 0.11 | 0.64 | 0.64 | 0.44 | 0.44 | 0.44 | 0.18 | 0.00 | 0.18 | 0.18 | 0.00 | 0.18 |
| Sat Flow, veh/h | 1781 | 1731 | 81 | 660 | 1670 | 133 | 1174 | 0 | 1585 | 1415 | 0 | 1585 |
| Grp Volume(v), veh/h | 267 | 0 | 831 | 6 | 0 | 680 | 23 | 0 | 2 | 49 | 0 | 208 |
| Grp Sat Flow(s),veh/h/ln | 1781 | 0 | 1811 | 660 | 0 | 1802 | 1174 | 0 | 1585 | 1415 | 0 | 1585 |
| Q Serve(g_s), s | 4.0 | 0.0 | 16.8 | 0.3 | 0.0 | 18.9 | 1.1 | 0.0 | 0.1 | 1.6 | 0.0 | 6.9 |
| Cycle Q Clear (g_c), s | 4.0 | 0.0 | 16.8 | 5.9 | 0.0 | 18.9 | 8.0 | 0.0 | 0.1 | 1.7 | 0.0 | 6.9 |
| Prop In Lane | 1.00 |  | 0.04 | 1.00 |  | 0.07 | 1.00 |  | 1.00 | 1.00 |  | 1.00 |
| Lane Grp Cap (c), veh/h | 407 | 0 | 1164 | 354 | 0 | 793 | 192 | 0 | 281 | 379 | 0 | 281 |
| V/C Ratio(X) | 0.66 | 0.00 | 0.71 | 0.02 | 0.00 | 0.86 | 0.12 | 0.00 | 0.01 | 0.13 | 0.00 | 0.74 |
| Avail Cap(c_a), veh/h | 558 | 0 | 1695 | 492 | 0 | 1168 | 364 | 0 | 514 | 587 | 0 | 514 |
| HCM Platoon Ratio | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(l) | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 |
| Uniform Delay (d), s/veh | 11.0 | 0.0 | 6.5 | 12.2 | 0.0 | 14.0 | 25.4 | 0.0 | 18.8 | 19.5 | 0.0 | 21.6 |
| Incr Delay (d2), s/veh | 1.8 | 0.0 | 0.8 | 0.0 | 0.0 | 4.4 | 0.3 | 0.0 | 0.0 | 0.2 | 0.0 | 3.8 |
| Initial Q Delay(d3),s/veh | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| \%ile BackOfQ(50\%),veh/ln | 1.4 | 0.0 | 4.3 | 0.0 | 0.0 | 6.0 | 0.3 | 0.0 | 0.0 | 0.5 | 0.0 | 2.6 |
| Unsig. Movement Delay, s/veh |  |  |  |  |  |  |  |  |  |  |  |  |
| LnGrp Delay(d),s/veh | 12.8 | 0.0 | 7.4 | 12.2 | 0.0 | 18.4 | 25.7 | 0.0 | 18.8 | 19.7 | 0.0 | 25.5 |
| LnGrp LOS | B | A | A | B | A | B | C | A | B | B | A | C |
| Approach Vol, veh/h |  | 1098 |  |  | 686 |  |  | 25 |  |  | 257 |  |
| Approach Delay, s/veh |  | 8.7 |  |  | 18.4 |  |  | 25.1 |  |  | 24.4 |  |
| Approach LOS |  | A |  |  | B |  |  | C |  |  | C |  |
| Timer - Assigned Phs | 1 | 2 |  | 4 |  | 6 |  | 8 |  |  |  |  |
| Phs Duration ( $\mathrm{G}+\mathrm{Y}+\mathrm{Rc}$ ), s | 11.3 | 29.4 |  | 14.8 |  | 40.7 |  | 14.8 |  |  |  |  |
| Change Period ( $\mathrm{Y}+\mathrm{Rc} \mathrm{c}$, s | 5.0 | 5.0 |  | 5.0 |  | 5.0 |  | 5.0 |  |  |  |  |
| Max Green Setting (Gmax), s | 11.0 | 36.0 |  | 18.0 |  | 52.0 |  | 18.0 |  |  |  |  |
| Max Q Clear Time (g_c+1), s | 6.0 | 20.9 |  | 10.0 |  | 18.8 |  | 8.9 |  |  |  |  |
| Green Ext Time (p_c), s | 0.4 | 3.6 |  | 0.0 |  | 7.5 |  | 0.9 |  |  |  |  |
| Intersection Summary |  |  |  |  |  |  |  |  |  |  |  |  |
| HCM 6th Ctrl DelayHCM 6th LOS |  |  | 14.1 |  |  |  |  |  |  |  |  |  |
|  |  |  | B |  |  |  |  |  |  |  |  |  |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 4.2 |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{1}$ | 4 | 「 | ${ }^{7}$ | 4 | 7 |  |  | F |  |  | 「 |
| Traffic Vol, veh/h | 240 | 759 | 33 | 5 | 588 | 45 | 0 | 0 | 23 | 0 | 0 | 231 |
| Future Vol, veh/h | 240 | 759 | 33 | 5 | 588 | 45 | 0 | 0 | 23 | 0 | 0 | 231 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | 150 | - | - | 0 | - | - | 0 |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 267 | 843 | 37 | 6 | 653 | 50 | 0 | 0 | 26 | 0 | 0 | 257 |



| Intersection |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.4 |  |  |  |  |  |
| Movement | SET | SER | NWL | NWT | NEL | NER |
| Lane Configurations | $\boldsymbol{F}$ |  | 1 | 个 |  | $\mathbf{7}$ |
| Traffic Vol, veh/h | 988 | 6 | 47 | 775 | 0 | 9 |
| Future Vol, veh/h | 988 | 6 | 47 | 775 | 0 | 9 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - | None | - | None |
| Storage Length | - | - | 50 | - | - | 0 |
| Veh in Median Storage, \# | 0 | - | - | 0 | 0 | - |
| Grade, \% | 0 | - | - | 0 | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 5 | 2 | 2 | 5 | 2 | 2 |
| Mvmt Flow | 1098 | 7 | 52 | 861 | 0 | 10 |



| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 1.5 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{1}$ | 4 | 「 | ${ }^{7}$ | $\uparrow$ |  |  | * |  |  | $\$$ |  |
| Traffic Vol, veh/h | 53 | 553 | 33 | 5 | 441 | 5 | 21 | 0 | 2 | 3 | 0 | 25 |
| Future Vol, veh/h | 53 | 553 | 33 | 5 | 441 | 5 | 21 | 0 | 2 | 3 | 0 | 25 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control F | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 59 | 614 | 37 | 6 | 490 | 6 | 23 | 0 | 2 | 3 | 0 | 28 |




| Major/Minor | Major1 |  |  |  | Minor2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conflicting Flow All | 541 | 0 | - | 0 | 1311 | 539 |
| Stage 1 | - | - | - | - | 539 | - |
| Stage 2 | - | - | - | - | 772 | - |
| Critical Hdwy | 4.12 | - | - | - | 6.42 | 6.22 |
| Critical Hdwy Stg 1 | - | - | - | - | 5.42 | - |
| Critical Hdwy Stg 2 | - | - | - | - | 5.42 | - |
| Follow-up Hdwy | 2.218 | - | - | - | 3.518 | 3.318 |
| Pot Cap-1 Maneuver | 1028 | - | - | - | 175 | 542 |
| Stage 1 | - | - | - | - | 585 | - |
| Stage 2 | - | - | - | - | 456 | - |
| Platoon blocked, \% |  | - | - | - |  |  |
| Mov Cap-1 Maneuver | 1028 | - | - | - | 170 | 542 |
| Mov Cap-2 Maneuver | - | - | - | - | 370 | - |
| Stage 1 | - | - | - | - | 567 | - |
| Stage 2 | - | - | - | - | 456 | - |
|  |  |  |  |  |  |  |
| Approach | SE |  |  |  | SW |  |
| HCM Control Delay, s | 0.4 |  | 0 |  | 12.3 |  |
| HCM LOS |  |  |  |  | B |  |
|  |  |  |  |  |  |  |
| Minor Lane/Major Mvmt |  | NWT NWR |  | SEL | SETSWLn1 |  |
| Capacity (veh/h) |  | - | - | 1028 | - | 523 |
| HCM Lane V/C Ratio |  | - | - | 0.031 | - | 0.053 |
| HCM Control Delay (s) |  | - | - | 8.6 |  | 12.3 |
| HCM Lane LOS |  | - | - | A | - | B |
| HCM 95th \%tile Q(veh) |  | - | - | 0.1 | - | 0.2 |


| Intersection |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh 1.8 |  |  |  |  |  |  |  |  |  |  |  |  |
| Movement | SEL | SET | SER | NWL | NWT | NWR | NEL | NET | NER | SWL | SWT | SWR |
| Lane Configurations | ${ }^{1}$ | 4 | 「 | ${ }^{7}$ | $\uparrow$ |  |  | * |  |  | $\$$ |  |
| Traffic Vol, veh/h | 68 | 540 | 28 | 4 | 428 | 6 | 18 | 0 | 2 | 5 | 0 | 41 |
| Future Vol, veh/h | 68 | 540 | 28 | 4 | 428 | 6 | 18 | 0 | 2 | 5 | 0 | 41 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | 150 | 50 | - | - | - | - | - | - | - | - |
| Veh in Median Storage, \# | \# | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
| Heavy Vehicles, \% | 2 | 5 | 2 | 2 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| Mvmt Flow | 76 | 600 | 31 | 4 | 476 | 7 | 20 | 0 | 2 | 6 | 0 | 46 |



## APPENDIX D: TURN LANE WARRANT WORKSHEETS

The River District
ITD Right-Turn Lane Analysis
2019 Existing Traffic (Seasonally Adjusted)

|  | Intersection | Approach | Speed <br> Limit <br> (mph) | Peak <br> Hour | Right-Turn <br> Volume <br> (vph) | Major Road <br> Volume <br> (vphpl) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)SH 5 5 and <br> Riverview Parkway | SEB | 50 | AM | 4 | 239 | Meet <br> Warrant? |

*Approach volume per lane < 100 vphpl or right-turn volume < $20 \mathrm{vph}=$ Not Warranted


Major Road Volume (vphpl)
AM Peak


PM Peak
(1)

The River District
ITD Right-Turn Lane Analysis
2040 Background Traffic

|  | Intersection | Approach | Speed <br> Limit <br> (mph) | Pight-Turn <br> Peak <br> Hour | Major Road <br> Volume <br> (vph) | Volume <br> (vphpl) | Meet <br> Warrant? |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)SH 5 5 and <br> Riverview Parkway | SEB | 50 | AM | 14 | 370 | No* $^{*}$ |  |

*Approach volume per lane < 100 vphpl or right-turn volume < $20 \mathrm{vph}=$ Not Warranted


The River District
ITD Right-Turn Lane Analysis

2040 Total Traffic

| Intersection |  | Approach | Speed Limit (mph) | Peak Hour | Right-Turn Volume (vph) | Major Road Volume (vphpl) | Meet Warrant? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | SH 55 and Riverview Parkway | SEB | 50 | $\begin{aligned} & \mathrm{AM} \\ & \mathrm{PM} \\ & \hline \end{aligned}$ | Warranted Under 2040 Background |  |  |
| $2$ | SH 55 and Ponderosa Street | NWB | 50 | AM | 9 | 512 | No* |
|  |  |  |  | PM | 22 | 617 | Yes |
| $3$ | SH 55 and | NWB | 35 | AM | 8 | 685 | No* |
|  | Payette Street |  |  | PM | 23 | 711 | Yes |

*Approach volume per lane < 100 vphpl or right-turn volume < $20 \mathrm{vph}=$ Not Warranted


Major Road Volume (vphpl)
AM Peak


PM Peak 1

The River District
NCHRP Report 745 Left-turn Lane Guidelines
2019 Existing Traffic (Seasonally Adjusted)

| Intersection | Approach | Speed Limit [mph] | Peak Hour | Turning Volume [vph] | Opposing Volume [vph] | Meet Warrant? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) SH 55 and | NWB | 50 | AM | 1 | 239 | No* |
| (1) Riverview Driveway |  |  | PM | 1 | 490 | No* |

* Left-turn Volume less than 5 vph - Not Warranted


AM Peak 1
PM Peak (1)

The River District
NCHRP Report 745 Left-turn Lane Guidelines
2040 Background Traffic

$\left.$|  | Intersection | Approach | Speed <br> Limit <br> [mph] | Peak <br> Hour | Turning <br> Volume [vph] | Opposing <br> Volume [vph] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Meet |
| :---: |
| Warrant? | \right\rvert\,

* Left-turn Volume less than 5 vph - Not Warranted


The River District
NCHRP Report 745 Left-turn Lane Guidelines
2040 Total Traffic

| Intersection |  | Approach | Speed Limit [mph] | Peak Hour | Turning Volume [vph] | Opposing Volume [vph] | Meet Warrant? |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1$ | SH 55 and Riverview Driveway | NWB | 50 | AM | Warranted Under Background Conditions |  |  |
| 2 | SH 55 and | SEB | 50 | AM | 80 | 682 | Yes |
|  | Payette Street |  |  | PM | 89 | 708 | Yes |
| $3$ | SH 55 and | SEB | 50 | AM | 71 | 510 | Yes |
|  | Ponderosa Street |  |  | PM | 151 | 612 | Yes |
| $4$ | SH 55 and | NWB | 50 | AM | 3 | 444 | No* |
|  | Payette Street |  |  | PM | 3 | 902 | No* |

* Left-turn Volume less than 5 vph - Not Warranted


EXHIBIT D



## CAscade Rural Fire Protection District PRO. BOX 825 CASCADE, ID 8361 1-0825 109 East Pine Street (208) 382-3200 FAX (208)382-4222

November 13, 2019
RE: The River District
Is there a plan in place for reviewing the current water supply and storage capacity for the City of Cascade? The River District is a large proposed development. The Cascade Rural Fire Protection Districts concern is the current water storage for fire suppression. The water storage the City of Cascade currently has may not be sufficient for the proposed additional infrastructure.


Steven Hull
Fire Chief
Cascade Rural Fire Protection District
steve@cascaderuralfire.com

## Peggy Breski

$\begin{array}{ll}\text { From: } & \text { Sarah Arjona < Sarah.Arjona@itd.idaho.gov> } \\ \text { Sent: } & \text { Thursday, January 16, 2020 9:50 AM } \\ \text { To: } & \text { Peggy Breski } \\ \text { Subject: } & \text { RE: [EXTERNAL] RE: Cascade River District ITD Comments }\end{array}$

Peggy,
Thank you for reaching out to us. We have received the Traffic Impact Study for The River District and it is scheduled for review January $30^{\text {th }}$. Our review times are not too far out at this time however I don't think we will be able to provide comments before your next meeting. Comments for the TIS should be available shortly after.

Thanks again for reaching out,
Sarah Arjona
Development Services Coordinator
ITD District 3
(208) 334-8338

From: Peggy Breski [peggyb@horrocks.com](mailto:peggyb@horrocks.com)
Sent: Monday, January 13, 2020 10:29 AM
To: Sarah Arjona [Sarah.Arjona@itd.idaho.gov](mailto:Sarah.Arjona@itd.idaho.gov); Heather Soelberg [clerk@cascadeid.us](mailto:clerk@cascadeid.us)
Subject: [EXTERNAL] RE: Cascade River District ITD Comments
--- This email is from an external sender. Be cautious and DO NOT open links or attachments if the sender is unknown. ---
Sarah,
I wanted to give you a heads up that we received the TIS for The River District in Cascade this morning. Steve Arnold said he was sending to you this morning too. We are very eager to hear ITD's comments.

The applicant didn't give City a lot of time for review (City Council is 2 weeks from tonight), and I'm pretty sure ITD won't be done by then with review/comment. I was hoping you could give us an idea of what ITD current review timelines are lately...?

Thanks so much!

## Peggy Breski

Senior Planner | Project Manager
HORROCKS
E $N$ G I I $N$ E E R S
2775 W. Navigator Dr., Suite 210
Meridian, Idaho 83642
Phone 208-895-2520, ext. 435
Email peggyb@horrocks.com
Web www.horrocks.com

105 S. Main
PO Box 649
Cascade, ID 83611


Phone: 208-382-4279
Fax: 208-382-7204
Email: clerk@cascadeid.us
Web:

Red font indicates determinations made by P\&Z Commissioners at the June 17, 2019 Public Hearing.

DATE: June 6, 2019
TO: $\quad$ Steve Arnold, A-Team

FROM: City of Cascade

## SUBJECT: The River District (formerly Cascade River Ranch)

The City of Cascade has reviewed the A-Team's Submittal of Requested Exceptions for [now] The River District Planned Unit Development [formerly Cascade River Ranch]. The following determinations and comments apply:

1) Cul-de-sac length for "Resort Court" and "Cascade Court": P\&Z Approved this 6/17/19.
a) Cascade Rural Fire Department ("CRFD") is not in favor of allowing cul-de-sac lengths in excess of 750 -feet, and as the responding agency the City yields to their discretion. Request for any cul-de-sac to exceed 750-feet in length is therefore denied.
b) CRFD and the City will allow for an exception of cul-de-sac length from 500-feet up to 750 -feet, so long as all related requirements are also met: Per Appendix D "Fire Apparatus Access Roads, Table D103.4", any cul-de-sac exceeding 500-feet in length, up to 750 -feet, are required to be 26 -feet wide, edge of pavement to edge of pavement. Additionally, the cul-de-sac bulb will be required to be 96 -feet in diameter, per D103.1 of the same document.
2) Building Height: Applicant rescinded this $6 / 17 / 19$.
a) This request must be denied due to the fact that CRFD is not equipped to respond to fires or emergencies exceeding 25 -feet in height. The Department has 35 -foot ladders, and per IFSTA (International Fire Service Training Association), responders are required to have no less than 3-5 rungs above the roofline; this means CRFD would be required to have 40+-foot ladders (giving allowance to roof pitches). Additionally, assuming CRFD had 40+-foot ladders the volunteer firefighters have not received the specialized In addition, Cascade City Code 3(1)(8)(F) dictates that R-3 Zoning only allows 2-story structures.
training required to serve at this level, nor do they have the auxiliary equipment necessary to support the 40+-foot ladder service.
3) Parking: Applications are now in compliance.
a) The City will need to revisit this Exception Request once all other details are adequately addressed and represented in the Plat (most specifically roadways, lot sizes and setbacks).
4) Lot Sizes: P\&Z Commissioners determined changes as shown below:
a) The Townhome lot widths have already been recommended for approval at 30 -feet wide as requested; as long as there is adequate depth to the lot to allow for the-20-foot 10 -foot deep driveway in addition to complying with the setbacks as recommended in the City Comments dated May 17, 2019, a 3,000 sq.ft. lot would be considered for approval.
b) The City had requested an exhibit showing lot lines as required by Code (during May 20, 2019 meeting), and how the lot lines would cross over and intersect in the given area; this document was requested and is still being requested to demonstrate the need for the City to approve a request that contradicts Code. Staff created exhibit and recommended approval.
c) The City will not rezone residential areas to Zone C.
5) Setbacks:
a) The setback table as provided by the City in the City Comments dated May 17, 2019 (and as shown below) shows the request for Townhomes specifically being allowed.
b) The City acknowledges the request for Exception on other setbacks but the table as shown below illustrates the minimum the City is willing to recommend for approval; allowing the setbacks as requested for exception would go directly against the Comprehensive Plan components and would create potentially unsafe, and unsightly community design.
c) The Riverside Setback is still under review with outside Agencies; this item is TBD.
d) The City will not rezone residential areas to Zone C.

Setbacks: Commissioners approved the following changes:

| UNIT TYPE | FRONT/Street | REAR/Yard | SIDE |
| :--- | :--- | :--- | :--- |
| Single Family | $20^{\prime}$ | $20^{\prime}$ | $15^{\prime}$ |
| Cottage | $15^{\prime}$ | $15^{\prime}$ | $5^{\prime}$ |
| Townhome | $15^{\prime} 10^{\prime}$ | $10^{\prime a}$ | $0^{\prime}$ inside $/ 5^{\prime}$ outside ${ }^{\text {b }}$ |
| Multi-family | $15^{\prime}$ | $10^{\prime}$ | $10^{\prime}$ |


| Commercial | $15^{\prime}$ | $0^{\prime}$ | $0^{\prime}$ |
| :--- | :--- | :--- | :--- |
| Riverside | - | TBD |  |

${ }^{\text {a }}$ Except where rear setback is riverside, then riverside setback applies
${ }^{\text {b }}$ Updated from first set of City Comments
6) Storage Areas: P\& Z Commissioners waived this Code requirement.
a) Storage areas may not be "typical" in non-resort areas like the Treasure Valley, however due to the lifestyle of residents of the City of Cascade, storage area requirements are a pertinent City Code. With good planning and design there is no reason the integration of storage would be "aesthetically awkward"; the City Staff have contemplated numerous options in design as solutions to this problem and can be available to provide recommendations if Application wishes.
b) A Planned Unit Development of this scale cannot depend upon off-site facilities to support the development; providing storage is a Code requirement and one that must be met for orderly growth and expansion of the community.
c) Given the above considerations, and given that other solutions have been identified and are available, this exception request must be denied.

Thank you.

